Sidebar: Alexeyev/Sukhoi Albatros

albatros

A conjectural diagram of the Albatros launcher, by Mark Wade of Encyclopedia Astronautica. Used with permission.

Rostislav Alexeyev built the latter part of his engineering career on ground effect, which is the demonstrable fact that a wing generates more lift and experiences less drag when it’s in close proximity to the ground than it does while high in the air. In general aircraft don’t take advantage of it when cruising because of the increased risk—the ground is right therein the event of something going wrong, but Alexeyev was an expert on hydrofoil design and felt that the problem was sufficiently mitigated by flying over water to be worth attacking. Between the Khrushchev era and his death in 1980 he built his largest ekranoplan (“screen plane”), the so-called “Kaspian Monster” (KM: korabl maket, “test vehicle”) which met a watery fate in an accident not long after Alexeyev’s demise.

If you’re the sort of person who’s interested in Soviet crewed spaceflight you’re probably the sort of person who finds Russian ekranoplans and hydrofoils interesting too, but you may be wondering where the connection is between the two that would cause the latter to show up on a  blog devoted to the former. The intersection of this particular Venn diagram is the Albatros, outlined in a remarkable letter to the British Interplanetary Society’s Spaceflight magazine, published in 1983.

Long-time readers will recall that the Soviet space program was in disarray for much of the early 1970s, with 1974 being the year of crisis. Vasili Mishin was replaced by Valentin Glushko as the man in charge, and officials higher than him forced a change in focus from Moon missions to a space shuttle and space stations. For a period of time everything was in the air, and as was endemic to the Soviet space effort various other empire builders tried to get themselves a piece of the pie.

The design bureau of OKB-51 lurked on the edges of the Russian space program right from the very beginning, but never managed to convert its expertise in high-performance aircraft into any concrete projects. In 1974 they teamed with Alexeyev’s Central Hydrofoil Design Bureau to make a claim on the shuttle project, as at the time it was not yet settled that the Soviets would emulate the American Space Shuttle closely to produce Energia/Buran (consider, for example, Glushko’s MTKVP, which also dates to the same time). Their proposal was named Albatros, and it’s, so long as the source, space historian and writer Neville Kidger, got his Cold War information right, the only triphibious spaceplane ever proposed, requiring both water and air to get into orbit and land for its return.

One can see what, perhaps, they were thinking: margins are punishing on space vehicles, and it takes only a little inefficiency to turn a potentially useful craft into something that lifts a uselessly small amount of mass to orbit. Using aircraft as airborne launchers has been mooted a few times, why not use a ground effect “aircraft” to squeeze a little more oomph into your package?

The result was a three-stage vehicle, the first of which would have been a roughly 1800-ton, 70-meter long, Alexeyev-built, hydrofoilnot a full-fledged ekranoplan, alasthat could be thought of as a maritime version of the Space Shuttle’s external fuel tank. It would carry 200 tons of LOX and LH2 to feed the initial boost of the second stage’s motors.

Mounted on top of the hydrofoil, the estimated 210-ton second stage would use the first’s fuel to get up the whole arrangement up to 180 km/h over the course of 110 seconds, using the Caspian Sea (or the Aral or Lake Baikal) as a runway. Then it would disconnect and launch itself off the now-empty barge to consume its own propellants. This stage would be a high-speed reusable winged rocket plane/booster from Sukhoi that would lift the third stage—the actual spaceplane, also from Sukhoi—to a high altitude. There the latter would kick itself into orbit while the booster coasted into landing, possibly under pilot control; sources don’t say if the booster was to be manned, but with Sukhoi’s background it likely was.

The final stage was a tail-less rocket plane, about 80 tons in mass and 40 meters in length, so comparable to the American orbiter. It was estimated to have 30 tons of payload to LEO and a crew of two. It would have been larger than but was otherwise similar in appearance to some iterations of the Hermes shuttle, or to a lesser extent the later Russian/European Kliper. It was the most run-of-the-mill part of the whole vehicle, its design actually being closer to the American shuttle than the MTKVP. The air-based launcher was a radical approach, if not unique, but the underlying hydrofoil was the truly surprising suggestion.

It’s not difficult to see why the idea never went anywhere. Even putting aside the two partners’ inexperience with designing spacecraft, their proposed setup is ludicrous on its face, with tons of volatile propellant skimming over the water at triple-digit speeds, regardless of what its engineers might have actually calculated and put to paper. The likes of Dmitri Ustinov would have blanched if asked to sign off on it, as the country’s internal politics made Soviet decision makers inherently conservative. If they were eventually driven to insist on a close analog to the Shuttle over other proposals, one can only imagine what they thought about this one.

TMK-1/MAVR: Red Planet

MAVR sketch schematic

Soviet-era schematic of MAVR, provenance and copyright status unknown. Please contact the author if you know of its source. 2 is the greenhouse, 3 is the drop probe for Mars, 9 the probe for Venus, 10 the telescope, and 11 the living quarters.

What it was: Two separate, competing Mars flyby/lander missions (with the same name) from OKB-1, synthesized into a Mars/Venus flyby mission that was the original purpose of the N1.

Details: Wernher von Braun was famously focused on Mars for much of his life, so it’s no surprise that there were two serious proposals to send American astronauts to our next neighbour out during his heyday at NASA. Less well-known is that Sergei Korolev was likewise enamoured of a Mars mission. When the N1 rocket was first floated in 1956, it was quite specifically intended as a launcher for Korolev’s early partner Mikhail Tikhonravov’s proposal of the MPK (марсианского пилотируемого комплекса, “Mars Piloted Complex”). The MPK spacecraft was wildly ambitious—a 1630 tonne ship requiring 20 to 25 N1 launches!—and never even got to the point of sketch plans.

The basic reason for the MPK’s enormous mass was that it was both a landing mission and relied on chemical propulsion. That implied two possible routes out of the dilemma, and in the wake of Korolev and OKB-1’s success with Sputnik, work got underway on studying both under the umbrella name of TMK (Тяжелый Межпланетный Корабль, “Heavy Interplanetary Spacecraft”). One group headed by Konstantin Feoktistov—later famous as a member of the first multi-person crew aboard Voskhod-1—studied an ion-propulsion driven landing mission, while Gleb Maksimov spearheaded a conventionally propelled flyby craft.

Feoktitsov’s TMK settled on a nuclear reactor to power a “slow but steady wins the race” approach that would spiral up, unmanned, through the Van Allen radiation belts. A conventionally launched mission would sprint through the belts and catch up, depositing cosmonauts aboard this spindly-looking ion drive-driven craft for the long journey to Mars. This arrangement initiated one “look” for Soviet and Russian long-term manned missions since then: the dangerous reactor, its engine, and the necessary cooling vanes were all arrayed along a long boom that kept them away from the fragile men aboard.

Maximov’s TMK was far more conservative from a modern perspective, and actually somewhat resembles both the MVF and Skylab. This was the option selected for moving forward. By the end of 1961 the basic parameters of the craft were settled and the mission tentatively aimed at leaving Earth on June 8, 1971 and returning on July 10, 1974—by far the longest manned mission seriously considered of which the author is aware, topping even the Triple Flyby variant of NASA’s MVF.

During coast and flyby it would have been 12 meters in length and weighed 35 tonnes—prior to Mars injection this would have been 75 tonnes including propellant, hence accounting for the lifting capability of a single N1. There would have been 50 cubic meters of space inside, split evenly between habitation and work space. A visual-light telescope for astronomical observations was attached to the side, a communications antenna to the fore, and a spread of solar panels girdled it. During coast the craft would have rotated end-over-end for a bit of artificial gravity, and during flyby there was an unmanned probe to drop off for landing. At the end of the mission a return capsule, nestled in the aft end to that point, would bring the cosmonauts back to the ground.

Both life support and food would have been dependent upon a greenhouse based on Chlorella chlorophyte algae, which was calculated to give better value for mass than chemical oxygen plants: 27 kilograms of oxygen per day per kilogram of algae. The food it made would have been supplemented partly by prepared stores. Getting this plant (no pun intended) up and running was considered the key breakthrough needed for the craft, and considerable work was done through the 1960s. Three men were sealed into a close-looped simulator ecosystem based on it in 1967.

A mockup of the MAVR (MArs-VeneRa) itself—as TMK-1 was renamed once a Mars/Venus flyby path was found that was shorter than the 1000-day mission mentioned above—was begun in 1964 but foundered due to zero funding.

What happened to make it fail: MAVR was ready to roll as exactly the wrong time. Khrushchev had grown disenchanted with Korolev’s follow-up to the R-7 missile, the R-9, and instead was coming to favour the line of storable-propellant missiles developed by Mikhail Yangel. Vladimir Chelomei jumped on this and proposed his own set of manned spacecraft, one of which was for interplanetary voyages, after poaching engine designer Valentin Glushko from Korolev to build his own rockets.

By the time Korolev regained control of the Soviet manned space program he and his nation’s leaders had decided that the gauntlet thrown down by Kennedy for a race to the Moon was serious, and moreover that they should pick it up. The N1 was “stretched” to become a Moon rocket, the Mars mission was put off into the indefinite future, and the rest is history.

What was necessary for it to succeed: Getting people to Mars has turned out to be far harder than expected, so the breezy optimism that had the MAVR at Mars by the mid-1970s is hard to sustain. A lot of things went against it: the early-60s infighting in the Soviet space program, disinterest in space on the part of the Soviet military, Korolev’s egotistic insistence on going head-to-head with Apollo, the shift in the USSR’s manned spaceflight focus to shuttle and space station during the 70s…the list goes on.

One thing that would have cleaned up a lot of them, or at least softened their impact, was the transfer of the space program away from the Soviet military, in particular the GRAU which funded the rockets. They wanted missiles not launch vehicles, and so logically if Khrushchev has been serious about wanting a space program he would have accepted a proposal from Korolev made post-Sputnik that OKB-1 be reorganized as a civilian organization like NASA. It didn’t happen.

One more note: long-time readers with good memories might have noted that the initial dates selected for the mission (though it was extraordinarily unlikely that the Soviets could have hit their targets) were roughly similar to those mentioned in our discussion of the NASA Mars-Venus Flyby. As mentioned in that post, there was a tremendous solar flare in 1972 that, by NASA’s estimate, would have hit anyone outside of the Earth’s protective magnetosphere with roughly 4 grays of radiation, with death resulting in the next few weeks.

A fine image of what MAVR might have looked like as it passed Mars can be seen on the Deviantart page of Polish artist Maciej Rebisz.

VR-190: Stalin’s Rocket

GPN-2002-000162

Diagram of the VR-190’s capsule. NASA image via archive.org

What it was: An attempt to turn a Soviet copy of the V-2, the R-1, into a suborbital manned rocket.

Details: After the fall of the Third Reich and the scattering of its rocket scientists to the winds, all three of the main Allied powers found themselves in possession of at least a few V-2 rockets. All of them then considered putting a man on top of one for a suborbital flight. In the case of the British and the Americans this was barely more formal than someone saying “Hey, why don’t we put a man on top of one of these things?”, but in the Soviet Union a considerable amount of design work was done before the project eventually came to a halt.

To some extent this was because the Russians did far more work with the V-2 than the other two powers. They managed to retrieve only a very few German-built V-2s and so set about learning how to build them on their own. In 1951 the home-built R-1, a copy of the V-2 with a few local improvements, was accepted into the Soviet military as their first operational ballistic missile. This work was done by OKB-1 under Sergei Korolev and lead quickly to the R-2 (AKA the Scud), the abortive R-3, and eventually the R-7 that was used to launch Sputnik and Yuri Gagarin into space.

The R-7 was famously built to use a core engine with strap-on boosters (four in the case of the R-7), as opposed to the Americans’ pre-Shuttle tendency to use a serially fired stages for manned flights. The initial Soviet studies on strap-on launchers were done by a relatively unknown GIRD member named Mikhail Tikonravov, who was one of the very few notable rocket engineers to escape the pre-War purges and so was well-positioned to work on Russian missiles as soon as the war was over.

His projects prior to studying the pros and cons of what he called “packet” launchers included the VR-190. As mentioned earlier, the US and UK never got very far into manned space travel based on the V-2 due to extreme skepticism on the part of the responsible parties in both countries. The USSR was the exception, and surprisingly Stalin was not only aware of it—Tikhonravov mailed a proposal directly to him in March 1946—the Soviet dictator specifically approved of it. The designer, who was Deputy Chief of NII-1 (“Scientific Research Institute-1”) worked on this goal until 1949.

Dubbed the VR-190 (Vysotnaya Raketa, “High-Altitude Rocket”), Tikhonravov’s variation on the V-2 took advantage of Russian work (partly done by the German engineers they had dragooned back to Kaliningrad) on separable nosecones for the V-2 that had been incorporated into the R-1. The German missile had problems with falling apart as it re-entered the atmosphere and the Russians and their Germans had realized that they could save weight and trouble by only worrying about the payload — the rocket itself had done its job by the time the dive back down arrived, and it could be dispensed with.

With the idea of a nosecone that could be swapped in or out now floating around, there were several different ideas put forward for how this capability could be used scientifically. In the early 1950s OKB-1 would fire R-1s into suborbital space with scientific instruments, gas sampling containers, and “biologicals” on board; the first living things to go to space and return were a pair of dogs, Dezik and Tsygan, who went up on July 29, 1951 (Charmingly, Tsygan was adopted as a pet afterwards by physicist Anatoli Blagonravov, later a negotiator for the Apollo-Soyuz Test Project. Dezik, unfortunately, did not survive his second flight).

The VR-190’s payload was to be a manned capsule containing two cosmonauts—a word coined by Tikhonravov—seated side-by-side but facing in opposite directions. Its mission was not even suborbital in the technical sense that it would not have been launched any distance downrange. Rather, it was a pure vertical hop, aimed for maximum height at the cost of all else.

Perched atop the modified R-1, the cosmonauts would have ridden up to 190 kilometers before their capsule separated from the main body of the rocket. A parachute would have returned them safely to Earth, where dry land was the target. A moment before actual landing a probe on the underside of the capsule would detect the ground and fire retrorockets to counter the last of the craft’s speed—a tactic familiar from actual Soviet and Russian craft built later, first conceived of here.

What happened to make it fail: Despite Stalin’s approval, it seems to have bogged down in bureaucratic rigmarole and never got the attention or funding it would have needed. Certainly many of the people to whom Tikhonravov reported were skeptical of spaceflight, and in the atmosphere of terror that Lavrenti Beria cultivated in the 1940s USSR few were willing to stick out their necks, not least because there’s evidence that Beria himself was not sold on manned spaceflight. A few months after making his proposal Tikhonravov was moved out of NII-1, where he was under the control of a doubtful Ministry of Aviation, to the newly formed NII-4. This new bureau’s job was to develop theoretical concepts for military use of rockets but he was assigned quite strictly to that. He and his team continued to work on the VR-190 in his spare time.

By 1949 the focus of biological experiments had been shifted to the aforementioned dogs, and Stalin’s interest had drifted toward the far more sophisticated Sänger-Bredt spaceplane and sent Mstislav Keldysh on a quixotic quest to build one for the Soviet Union. Tikhonravov’s attempt to refocus it back in early 1950 was slapped down by the powers-that-be, who felt he should stick to what he had been asked to think about. Tikonravov was demoted from his position at NII-4 and eventually wound up at OKB-1 working under Sergei Korolev as a spacecraft designer. His previous work was instrumental to getting approval for launching Sputnik 1 in 1957, and he was a key person in the design of “Object D”, later dubbed Sputnik 3, which followed Sputnik 1 and Laika’s Sputnik 2 into space.

What was necessary for it to succeed: At the time rocketry was #2 on Stalin’s list of important military goals. Developing nuclear weapons was #1 and rocketry research was relatively focused on military applications of fission and then fusion bombs. The key turning points both came in 1953: Stalin’s death in March, and the first Soviet thermonuclear bomb test on October 12, 1953. The Soviet leadership was thrown into fratricidal chaos internally and stasis externally, not least because of Stalin’s micromanagement—for example, Georgy Malenkov, one of the initial triumvirate which took over, was ostensibly on the committee controlling the development of ballistic missiles prior to Stalin’s death but in practice he actually knew very little about the projects he supposedly oversaw.

With the pressure off to catch up with the United States in nuclear arms after the successful test, missiles to deliver them moved to the top of the Soviet wish list at the same time the grip of the country’s leadership had faltered enough to let the designers work on space projects that would have got them shot under Stalin and Beria (the latter judicially murdered himself in December 1953).

So the key to getting the VR-190 into space with its two cosmonauts aboard might be to have Stalin die (or be assassinated) not long after he approved Tikhnonravov’s initial proposal. The new leadership would be inclined to let things roll on their course for a while until more sure of themselves (as they did in real history) and the shakeups of the Politburo’s civil wars might have got pro-rocket Ministers in place of the pro-aviation ones that stopped Tikhonravov in 1949-50. This wouldn’t have been a sure route, but it would at least open up possibilities that did not exist in the late Stalin-era USSR.

That the VR-190 could have been successful is fairly clear given the pace at which events moved from 1953 to 1957. The R-1 was much less powerful than the R-7, but then the R-7 was much above the requirements of a suborbital flight. Reaching space in a vertical shot is much easier than orbiting the Earth, yet Vostok 1’s historic flight was a full orbit  launched on top of a slight variant of the very rocket which produced Sputnik 1 in 1957. The VR-190 would have been dangerous (two of its eight dog flights ended in death) but the USSR or, for that matter, the US or even UK with their captured V-2s, could have grabbed the first laurel of human spaceflight sometime about 1951, more than half a decade before the Space Age actually began.

Sources: Challenge to Apollo, Asif Siddiqi. “The Man Behind the Curtain”, Asif Siddiqi, published in Air and Space Magazine, Oct.-Nov. 2007. “Tikhonravov”, Russian Space Web, Anatoly Zak.

We have liftoff!

Welcome back, everyone. Below you’ll find the first new entry to the blog since I wrapped up the text of the eBook that was the intended goal of False Steps since day 1. It’s a recent proposal, a concept dating to 2011, just to show that failed space vehicles didn’t stop after the 60s and 70s.

On that note, the book is now available—you can use the links in the sidebar to the right to order it. Those of you with Kobos/Nooks stay tuned: it’s been shipped to both the Kobo store and Barnes & Noble’s NOOK store, but has not yet made it into their catalogs. I’ll post the links for those when they become available.

You may also be interested in the most recent post to my other blog, Passing Strangeness, which is about the Magdeburg Rocket. While not strictly about manned spaceflight, it runs down the details of the first attempt to build a manned rocket that reached the prototype phase—in 1933! Oh, those ever-so-optimistic boys from the German VfR….

Enjoy!

NAUTILUS-X: Getting Past the Moon, In Style

The Nautilus-X, having shaken out in cislunar space, heads out for its first mission to an NEO, 2001 CQ36, in late May of 2021. Composite of two images sourced from NASA.

The Nautilus-X, having shaken out in cislunar space, heads out for its first mission, a 354-day round trip to Near-Earth Object 2001 CQ36, in late May of 2021. Composite of two images sourced from NASA.

What it was: A large spacecraft concept intended for long-term missions developed in response to two goals in the NASA Authorization Act of 2010: developing a crewed exploration vehicle capable of operating beyond Low Earth Orbit, and incorporating new technologies into NASA programs.

Details: Long-term readers may have noticed that, even for a blog devoted to space projects that didn’t happen, few of the ships discussed here are very big. Contrast this with the regular images of spacecraft in science fiction, even the ones with pretensions to realism like 2001: A Space Odyssey and Mission to Mars. Gravity is a harsh mistress and real spacecraft like Soyuz and Apollo are miracles of miniaturization because the cost of launching anything larger is prohibitive.

The notable exceptions are vehicles that were proposed for missions beyond the Moon, such as the Manned Venus Flyby or Mars Expedition 1969. You can get away with stuffing three astronauts into a space the size of a walk-in closet for a week or two, but it becomes a problem if you want to do it long enough to go to Venus, or Mars, or even a Near-Earth Object. This is one of the main reasons why, as of this writing, the leading candidate for NASA’s “next step” mission involves an unmanned craft grabbing a large boulder off a NEO and taking to lunar orbit, then sending a crewed mission in the relatively small Orion capsule to this “moon of the Moon”.

One of the most recent concepts to go build a big ship for further out came in January 2011. The NAUTILUS-X (supposedly a tortured acronym for Non-Atmospheric Universal Transport Intended for Lengthy United States eXploration, but almost certainly instead a shout out to the Nautiluses of Rickover and Verne as well as the X-planes of the past) was floated as a concept by NASA’s Technology Applications Assessment Team as part of a general program to build infrastructure and spacecraft that either developed or integrated new technology.

Prior to the building of the craft two main projects would be undertaken: the development of cryogenic propellant depots for placement in LEO and at the Earth-Moon L1 point, and the building and testing of an inflatable centrifuge ring for attachment to the ISS. Once these were in place, the NAUTILUS-X would refuel at one and incorporate a finished version of the other.

The centrifuge ring is perhaps the most interesting part of the concept, as it would have represented the first time anyone had tried to generate artificial gravity in space (barring an experiment with Gemini 11 that produced an imperceptible 0.00015 g) despite the fact that dodging the problems of free-fall this way has been a dream since the earliest days of spaceflight. The intention was to aim for a ring 30 feet (9 meters) in diameter spinning at a rate of 10 RPM and producing a third of a g—much less than Earth, but more than the Moon and comparable to Mars.

Furthermore the centrifuge was to be the keystone of another aspect of NAUTILUS-X: it and a number of other cylindrical, non-rotating modules were to be inflatable, a coming technology that’s actually due for its first test starting in a few weeks when the Bigelow Expandable Activity Module (BEAM) is to be launched by SpaceX and then attached to the ISS. On the LEO and NEO versions of the craft there would be three of these, and a extended-duration mission (up to 24 months) version that would have ten. In both cases two would be used for logistics and one for environmental control, a plant-growing facility, and an exercise area. The remainder on the extended-duration craft would be used for stores and a gradually increasing amount of living space as the stores were used.

The NAUTILUS-X would be built in pieces over a proposed 2-3 launches, at least one of which would be by a heavy launcher (the SLS, though that was still seven months away from being proposed publicly) putting the “spine” of the space vehicle into LEO. This was to have consisted of a solid operations module 14.5 meters long and 6.5 meters wide. Attached to the end of this would be a truss for supporting the inflatable units and a propulsion unit docking collar—the innovative idea behind this being that the NAUTILUS-X could swap out propulsion units depending on the mission. A solar electric ion engine was assumed for the basic setup, with more a nebulously defined unit for a Mars mission. In the same area of the ship was a radiation shelter using the LH2 and LOX fuel tanks around it for shielding.

At the front of the core module would be an Orion MPCV docking port and a small command/control and observation deck would stick out of the core’s side; a similarly sized “industrial” airlock stuck out the other. Once built the NAUTILUS-X could use its ion engine to slowly spiral out from Earth to the Earth-Moon L1 point, where it could be used as a passive space station-like fuel depot and headquarters for up to six astronauts launched later (it being impractical for them to be aboard during the spiral because of the Van Allen radiation belts) en route to the Moon. The craft would also be well-positioned to be take astronauts to NEO objects.

After a mission, NAUTILUS-X would return to a pre-arranged propellant depot in geosynchronous orbit for refuelling, while the astronauts on-board would return on the Orion that had brought them to it in the first place. They would re-enter, of course, but NAUTILUS-X was designed to stay in space permanently. Ultimately, a bespoke propellant depot would take its place at L1, letting the craft be used solely for missions and making it possible to refuel without returning to GEO repeatedly.

The design and build of the NAUTILUS-X was projected to cost a total of US$3.7 billion over 64 months beginning in 2015, with the shakedown mission (one sticking close to the Earth) taking place around 2020-21.

What happened to make it fail: It was too much, too soon. While NASA’s budget has gone up a bit since 2010, the Obama administration and various Congresses have been relatively cool to money for manned space exploration, many statements to the contrary, and so NASA has been hard-pressed to meet all the goals set out for them in 2010. Accordingly they’ve been focusing on the Orion MPCV and the Space Launch System as the two parts necessary to reach all the other goals. As NAUTILUS-X would be fulfilling the goal all the way down at the other end, it or anything else like it (for example, 2012’s Deep Space Habitat) have made no progress at all.

What was necessary for it to succeed: More money is the main one. Despite the addition of new technology to the NAUTILUS-X there’s nothing inherently absurd or difficult about the concept. Depending on how the tests of the inflatable centrifuge ring went on the ISS it would have undergone a redesign to a greater or lesser extent, but it’s a fairly conservative extrapolation of current space technology and almost certainly could be built in one form or another.

A more subtle problem is its reliance on a propellant depot. There’s reason to believe that there’s considerable internal debate at NASA over the wisdom of storing propellants in orbit, and without an orbital “gas station” a reusable ship with no re-entry capability is pointless.


Links

The original public presentation of Nautilus-X (PDF Format)

A very nice rendered video of the construction and then flight of the Extended Duration Explorer

Just a little picture teaser…

Image

Cover

If all goes according to plan, False Steps should be published via Smashwords this coming weekend, with iBooks store, Kobo, and Barnes & Noble in the couple of days following that. For now I thought I’d share the ever-so-retro cover, which looks as if it’s travelled here straight from 1959. (The image is from 1969, appearances to the contrary).

Expect a new blog entry at the same time, just as a little sweetener so you’ll all come back then.

Commencing Countdown

Welcome aboard, all passengers. This is your author speaking, just to let you know that False Steps is within a couple/three weeks of being published as an eBook through Smashwords. Just imagine! Some day your children or grandchildren might be reading these very words on a computer no larger than a refrigerator! Why you yourself will not be needing to code False Steps into your vacuum tube behemoths using machine language any more! What a strange and wondrous world we live in.

In all seriousness, the countdown begins today. If you’d like to keep an eye out, bookmark this page on Smashwords, or just stay tuned here. If you happen to be intrigued by my previous book (already available for sale for a mere $0.99 or, as we sometimes say, one micro-SLS) while there, so much the better.

If nothing else, watch for a few new entries here on space projects not yet covered. The plan is to get a little bit of new content for new readers brought here by the book, once every couple of weeks or so for the next couple of months at least.