Almaz: The Russian Battle Station

Almaz and TKS

As a secret military station, it’s not that easy to find good pictures of an Almaz. This small and blurry image shows a Phase 2 Almaz (a type never flown) on the left docked with a TKS ferry craft on the right. Copyright status and image source unknown, believed to be Russian: if you know the source of this picture, please contact the author.

What it was: A Soviet two-man experimental military space station. It was designed to blaze a path to a full-fledged military station by testing various technologies and homing in on what worked best in orbit. Among the items used were a reconnaissance camera attached to a telescope with a one-meter aperture and a recoilless gun that could be used to defend the station if it were attacked.

Details: The 1967 Outer Space Treaty banned all military use of the Moon and other celestial bodies, but space itself is less restricted: weapons of mass destruction aren’t allowed, but conventional weapons are. As a result the US, China, and the USSR have all conducted military tests in Earth orbit with varying degree of secrecy. In the case of the former two countries we have only a vague idea of what’s been done, but in the case of the USSR the fall of the Soviet government cracked open their archives in a variety of ways to reveal a surprising amount of work.

Before 1991 the history of the Soviet space program recorded that there were seven Salyut space stations launched between 1971 and 1982. They were a rightful source of pride, the best of the Russian responses to the manned Moon landings in the years prior. Not all of them were actual Salyut stations, however, or at least not exactly.

Salyut 1 was exactly what it appeared to be: a science station in Earth orbit, in fact the very first long-duration space station and so deserving of a major place in the history of space exploration. Salyut 2 was something different. Though we didn’t know at the time, the Soviet Union had a second complementary space station program, Almaz. Much like the American Manned Orbiting Laboratory of the previous decade, it explored the possible role of human beings on military outposts in space. Unlike the US station, it flew—three times. The Russians didn’t want to talk about it, and so they hid it behind Salyut.

As a result much of the Almaz stations’ clandestine nature stems from deliberate obfuscation, but another part of it is because of their tangled history. The decision to build a military station was made in October 1964, when the Soviet space program was in the middle of some heavy politicking between Sergei Korolev’s OKB-1 and the upstart agencies of Valentin Glushko and Vladimir Chelomei. Chelomei had the ear of Nikita Khrushchev because he had hired Khrushchev’s son. On the grounds that OKB-1 was too busy with the Moon race, Chelomei’s OKB-52 was given control of the space station project two days before Khrushchev was removed as leader of the Soviet Union.

While he kept control of the program for years yet, Khrushchev’s removal left the Almaz station starved for funds—it didn’t help that Chelomei was also enemies with Dmitri Ustinov, who became de facto minister for the Russian space program under Leonid Brezhnev. OKB-52’s work on Almaz did slowly advance until February 1970 when the Soviet leadership decided that placing a Russian space station into orbit before Skylab could be lofted by the Americans would be a good way to regain some of the prestige lost after Apollo 11. Chelomei’s group had made good progress on the structure of the station but was having problems with the many of its individual subsystems, so the eight Almaz frames he had built were taken away from him and given to OKB-1 (now headed by Vasili Mishin). OKB-1 outfitted the Almaz hull with Soyuz subsystems and then fired the result into orbit. Voila: Salyut 1.

Unfortunately, the first crew to live on Salyut 1 died on return to Earth when their Soyuz depressurized. When a second non-military Salyut crashed after failing to reach orbit, Chelomei was given another chance. Two more stations were soon sent up and they were very much more Almaz as originally envisioned, as Almaz-specific systems replaced the Soyuz components as fast as OKB-52 could finish designing and building them.  Salyut 2, known internally as OPS-1, failed not thirteen days after reaching orbit and was never manned, but the second Almaz (Salyut 3/OPS-2) was launched on June 25, 1974 and was a success, orbiting for seven months. The third Almaz (Salyut 5/OPS-3), sent into orbit three days short of two years after OPS-2, was even more successful, housing two different two-man crews (a third was launched but failed to dock, then proceeded to accidentally splash down in frozen Lake Tengiz, a body of water the size of Los Angeles in northern Kazakhstan). It stayed in space for more than thirteen months.

An Almaz station was composed of three main parts. On one end was a docking port where a crew-carrying Soyuz capsule could connect after the station was launched first. Small attitude rockets protruded from either side of the airlock here. This airlock led to a large-diameter working compartment which, in the three flown stations, was largely taken up with a three-meter long telescope with a one-meter aperture (by comparison, even the Hubble Space Telescope has an aperture of only 2.4 meters, so this was quite a large instrument for the mid-1970s). A variety of other reconnaissance equipment and an operating station for the remainder took up the rest of the compartment. Important images could be scanned and sent by radio back to Earth.

On the other hand if the image was not so urgent, or when the cosmonauts were not on duty, they would pass further aft into a smaller-diameter habitation area where there was a small shower, exercise equipment, one foldaway bed, and a standing sleeping area where a cosmonaut could Velcro himself to a wall and take a nap. An earth-return capsule here could be loaded with film and, when full, be shot back to Earth for development. The flown stations only had one of these capsules, so normally it would only be sent when the station was about to be de-orbited. One of these, rather dented because its parachute failed, was sold by Sotheby’s in 1993, and is now on display in the National Air and Space Museum. The habitation compartment ended with a hatch for EVA purposes, which ultimately was to be replaced with a second docking port so that crews could be rotated in and out.

What particularly distinguished the Almaz, however, was its offensive capability. Sources vary, but the best information is that OPS-1 was armed with a repurposed NR-23 short recoil cannon, a type that was used in Soviet bombers until the 1960s. On the day OPS-1 was ordered to de-orbit (its crew having left previously) it was triggered remotely and test-fired. Some cosmonaut sources say it was successful at shooting down a test satellite. Ultimately the Almaz was supposed to be armed with a purpose-built gun and two small missiles, but these appear to have not been developed by the time the Almaz program was cancelled. Though what actually flew was less impressive than what was planned, it still made OPS-1 the only military space station ever flown (so far as we know).

Of the first five so-called “Salyut” stations, only Salyut 4 was another hybrid of Almaz hull and Soyuz inner workings making up a non-military habitat. Ultimately the plan was for the Almaz to become a full-fledged military reconnaissance station in space, supplied by a Chelomei-designed rival to OKB-1’s Soyuz. Launched on Chelomei’s greatest success, the Proton rocket, the so-called TKS would deliver crews to the fully operational battle station while its nose (the vaguely Apollo capsule-like VA, more commonly known as Merkur) would be used as a return capsule—again, a case of Chelomei doing all he could to avoid the taint of OKB-1 technology, in this case the Soyuz’s distinctive acorn-shaped re-entry capsule.

None of this actually came to be.

What happened to make it fail: The Soviet military slowly came around to the same decision made by the United States about the Manned Orbiting Laboratory—reconnaissance can be done by unmanned satellites at a fraction of the cost of a manned station.

That still left Almaz’s offensive role, but in this case the USSR went in the opposite direction from their counterparts across the Atlantic. The announcement of the Space Shuttle rattled the Soviet military as they looked at the cross-range ability of that craft and came to the conclusion that the Shuttle had a military mission (to wit, that the Shuttle would carry a nuclear weapon in its cargo bay, bomb Moscow, and then return to Vandenberg Air Force Base on the same orbit—which to be fair, the Shuttle could actually have done if the American military had been planning on using it for that. They weren’t.)

As a result, the Soviet space program was ordered to work on a booster and spaceplane that could perform the same maneuver on the United States’ cities. This led to the Energia rocket and Buran shuttle clone, as well as other, lesser projects like the OK-M space interceptor—which was specifically tasked with anti-satellite and other in-orbit offensive operations. All of the program’s resources were poured into them, leaving neither missions nor money for Almaz. The USSR stuck to non-military stations, eventually leading to Mir.

What was necessary for it to succeed: It certainly would have helped if the Soviet Union hadn’t put all of its money behind Energia and Buran. But like the Manned Orbiting Laboratory, it simply couldn’t overcome a poor bang-to-buck ratio.

Nevertheless, the Almaz keeps popping up in the oddest places. OKB-52’s hull design was used as the basis of the non-military Salyut 6 and 7, and since Salyut 7 was a modular prototype for Mir, the greatest of all Soviet space stations owes a great deal to its defunct military ancestor. On top of this it’s worth remembering that a large chunk of the International Space Station is based on Russian modules intended for Mir-2—and since the plan was for Mir-2 to be based on a copy of Mir’s core block, that means that the ISS’s life support module, Zvezda, was a direct descendant of Almaz.

Two more Almaz hulls were turned into large unmanned radar satellites that were flown in 1987 and 1991 (confusingly, these were named Almaz-1 and Almaz-2), and a third would have been built and orbited if the fall of the Soviet Union hadn’t disrupted its funding.

Furthermore, while the TKS spacecraft that was intended to supply Almaz stations and bring their crews never actually became a manned spacecraft it was used for unmanned missions. And Zarya, the first module of the ISS, is one of these unmanned craft sans VA capsule.

Finally, a company named Excalibur Almaz (based in the Isle of Man and owned by Art Dula, the literary executor of Robert Heinlein) owns two Almaz craft and says they’ll be getting into space tourism by 2015. One of the products on offer is a lunar flyby, which if it were to actually happen would be Vladimir Chelomei’s posthumous last laugh on Sergei Korolev—his rival never did manage to send people to the Moon.

Advertisements

6 thoughts on “Almaz: The Russian Battle Station

  1. The problem with Almaz as an armed platform, I think, is that it can’t manoeuvre – either to get itself to a position to do something useful, or to evade incoming fire. The only way for it to survive an attack from, say, something like an X-20 descendant would be for it to fire first.

    I’ve heard about that lunar flyby idea. Yes, a free-return orbit is a mathematically fine thing, but I think I’d want to see people actually living in that life support system before I trusted it.

    As for the shuttle’s cross-range ability, that’s a whole separate rant which I’ll save for now…

    • It could maneuver a little bit using two engines attached to the airlock, but I think the primary reasoning for the lack of maneuverability is that it really wasn’t going up against anything like an X-20 in the near future. At the time the only manned craft the Americans had going was Apollo, against which Almaz would have been a match. I’ve heard (though I haven’t been able to track down a proper source) that the design specs specifically mentioned being able to defend against an attack using one.

      If your rant is “Having to have that cross-range ability — which they never actually used! — turned the Space Shuttle into a white elephant” then let me know when you’re ready to go and I’ll sing harmony.

      • Fair enough, I haven’t heard of any military angles to AAP but I’m sure the Soviets thought about them.

        As I heard it, the cross-range was to allow a satellite launch into a polar trajectory with return to launch site after a single orbit (by which time the Earth would have rotated some 20-ish degrees).But adding that cross-range meant wings rather than a lifting-body, which meant extra weight/lower payload, extra complication/the thermal tiles rather than a more conventional heat-shield aided by a plasma cushion, and so on…

        • Just so. The other thing to add to this is that a polar orbit was only achievable by launching from Vandenberg AFB, and that the Air Force never did — they got doubts after Challenger and went back to using rockets for their payloads. So the cross-range ability was literally never used for its intended purpose, not even once.

          Without that requirement the Shuttle would have been more like the so-called Shuttle DC-3, which had a low payload (about five tons at first, aiming for eleven as they figured out ways to lighten the craft) would otherwise probably would have been a lot more useful and “turn-aroundable”. They would have been able to use titanium for the underside instead of the cotton-candy ceramics that they had to go for, which would have helped a lot.

          Water under the bridge now….

        • Oh, absolutely. “Did not fly but might have” is the name of the game here. Actually, this conversation makes me think I’ll do the alt-shuttle or maybe Shuttle II very soon. I do want to do something non-American and non-Soviet next, though. Maybe I’ll cover the 1970s Chinese spaceplane and kill two birds with one stone.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s