ACTS: Europe and Russia Try Again

acts

A somewhat notional view of the ACTS as envisioned once its capsule shape was selected in 2008. By developing a command module with relatively steep walls, the ESA and Roscosmos hoped to solve the problem of cramped quarters aboard the Soyuz, and handle up to six crew. Adapted from an image by Jérémy Naegel, used under a Creative Commons ShareAlike 3.0 license. Click for a larger view.

What it was: A traditional capsule-based spacecraft to be developed jointly by the European Union and Russia, after those two failed to reach agreement on the Kliper lifting body (and further on Europe failing to the get the Hermes spaceplane off the ground).

Details: It’s been interesting the last twenty years or so to watch the gold standard for new crew return vehicles move away from small spaceplanes and lifting bodies back to capsules, as had been the preference through the 1960s. The watershed was sometime around 2006, when mockups of NASA’s Orion ceased to show a lifting body and changed to a capsule, and right about when the tandem of EU/Russia stopped looking at the Kliper and started talking about the Advanced Crew Transportation System (ACTS).

At the end of 2005, the Kliper foundered on the fact that Russia was to design and build it almost entirely. Despite that failure, the ESA was still fetching about for a crewed space project as they had also been rebuffed in approaches to the United States about sharing development of Orion’s capsule prior to Kliper. And so Russia came back into the picture within a few months.

As it happened, the EU had been working on the ATV, an unmanned supply spacecraft for the International Space Station, and it had already been noted that it bore a certain resemblance to a spacecraft service module. “Why not,” the thought ran, “have Russia develop a crew capsule to put on top of an adapted ATV?” Do so and you’d end up with something usable in Earth orbit for short missions, such as going to the ISS.

csts_eurosoyuz

The so-called “EuroSoyuz” first envisioned for the ACTS. This image is even more notional than the previous, based as it is on ideas being considered at the time and not any actual plans. The habitation module at the left, in particular, never progressed beyond an intent to make one eventually. Image by Jérémy Naegel, used under a Creative Commons Attribution 3.0 License.

Initially the craft was envisioned by RKK Energia as sort of “Soyuz, Mark 2”, which Energia called the Soyuz-2, with a Soyuz-shaped re-entry module, if not the one from an actual Soyuz. Rather it would be oversized, perhaps derived from work down on a mid-80s Soyuz replacement called the Zarya. This had stuttered along as late as 1995, when it was jointly proposed by Energia, Khrunichev and Rockwell as a lifeboat for the ISS. The ESA and Russia committed to a two-year study of the idea, with the ultimate intention of producing a spacecraft that could orbit the moon. This configuration was still in the lead as of August 2007.

The study’s mid-2008 deadline coincided with that year’s Farnborough Air Show, and the details that were announced then had moved on from the initial concept. Now the upper half of the ACTS was a conical capsule, built by the Russians and integrated by them onto the European service module. Many sources describe it as Apollo-like, but it was fairly different in being much more vertical, a mere twenty degrees from vertical on its side walls. This was a throwback to a proposed European capsule, Viking, which had popped up for a while immediately post Hermes before fading out after one subscale, suborbital test (the Atmospheric Reentry Demonstrator) in 1998.

Though the craft was not designed to the point of precise specs, we know that it would have probably have been under 18,000 kilograms, as one of the proposed ways of getting one to orbit was via Kourou Space Centre on top of a crew-rated Ariane-5, though figures bounced around from as low as 11 tonnes and as high as 20. The Russians also talked about launching the ACTS from Vostochny, probably for use on an Angara A5 (though that rocket is still under development even as late as December 2016); a Proton was also a possibility if the difficulties of launching cosmonauts on top of rocket fueled with nitrogen tetroxide and UDMH, and there was nebulous talk of a Zenit derivative (a rocket that had not been used.in Russia as the dissolution of the USSR left its manufacturer in Ukraine).

The capsule would have been five meters across the base and with its high vertical angle would have been roomy enough for six astro/cosmonauts (or four, if going to the Moon); one source reports 2.5 cubic meters of space, but this is no larger than a Soyuz and seems unlikely.

Ultimately the plan was to have a habitation module too, and the responsibility for this was assigned to Europe, but until the core ACTS spacecraft was much further along this was little more than a planned future commitment, with no details at hand. At the forward end, ACTS would at first have a Soyuz-style docking arrangement to take advantage of the matching ports on the ISS. Once it began its lunar missions, though, the plan was to have a common active/passive system with the Americans’ future craft so that joint missions would be easier.

On re-entry, the Russian-made capsule would have borrowed a trick from previously mentioned Zarya: a re-entry to land under a minimal parachute, with primary responsibility for landing being passed on to 12 solid rocket motors that would begin firing at about 300-800 meters up. Retractable landing legs were also mooted, as part of a general desire to make the capsule re-usable (with one Russian official hopefully suggesting ten flights in a lifetime). Rumor had it that this hair-raising retro-motor approach was made necessary by the Russians insisting on their historical requirement that their crews return to land in Russia, and with much of Central Asia now thoroughly Kazakh, the area they had to hit was much smaller than before—and parachutes normally cause one to drift quite a bit.

What happened to make it fail: Europe started showing signs of cold feet in the spring of 2008, just as the ACTS was making its splash at the Farnborough Air Show. The reasons are bureaucratically murky, but seem to have reflected the ascendance of a faction in the ESA that wanted to focus on “ATV Evolution”, a more ambitious approach where they’d upgrade the ATV so that it could return cargo, then upgrade the return module into a capsule, and then even turn it into the core module of a small space station. All this would be indigenous to Europe, with no Russian involvement.

ACTS might have survived this, but two competing financial tides worked against it. The Great Recession kicked off in late 2007, and for the next six years Europe had to deal with repeated sovereign debts crises that made money scarce. Not only was ATV Evolution shelved, even a shared spacecraft with the Russians was too expensive.

In the other direction we had a surging price for oil and gas (bar a severe but short drop near the start of the recession), reaching $140 per barrel in June 2008. Replete with petrodollars, Russia came to the conclusion that they didn’t need to put up with European waffling any more and could go ahead with their own, solo version of the ACTS. Political opinion at home favored this course anyway, and local laws on technology transfer made it difficult for Roscosmos and Energia RKK to come up with a legal framework for transferring technical information on Soyuz and other ACTS-related work out of Russia. This last issue is what is generally cited in official ESA documents as the main cause of ACTS’ failure.

Then in August 2008, Russia invaded Georgia in support of separatists there, followed by a gas pipeline dispute with Ukraine in January of 2009 that affected several EU countries. European confidence in Russia as a partner nosedived, and it became politically distasteful for the ESA to continue working with their Russian counterparts on such a high-profile project. Both sides quietly went on their way.

What was necessary for it to succeed: ACTS as such could have gone ahead in the face of most of the difficulties just listed. Certainly the financial crisis could have been ridden out for a few years, and the Russia oil boom didn’t last. What’s been the real killer has been the frosty relationship between Europe and Russia, kept chilled by further events like the latter’s clandestine invasion of eastern Ukraine. It’s difficult to see ACTS restarting any time after 2008, despite occasional French noises about re-establishing partnership with Russia.

Unlike most other projects discussed here, though, ACTS didn’t lead to no flying craft, or even to one. Rather it’s changed into two, and that’s not even counting the ATV Evolution which the ESA bravely claims is still on the table despite little sign of movement for about eight years. The Russian ACTS derivative was first called the PPTS, then it became the PTK. While that project has faced a long and slow road, it was formally dubbed Federation this year and, is still looking like it will fly in the 2020s.

On the European side, NASA announced in January 2013 that the previous design of the Orion service module was being replaced with an ATV-derived service module for at least the EM-1 unmanned test out past the Moon, currently scheduled for a year next September. Whether it will be used again after that mission is an open question, but so far it looks like it’s going to be used once. The initial idea that the ATV would work if someone else supplied a capsule for it was right, they’d just picked the wrong partner at first.

So the ACTS has survived after all, and did so by being cut in two. As mentioned, the Russian half has a name already, but seems fitting to name the as-yet-anonymous American/European half after King Solomon.

Sources

“Advanced Crew Transportation System”, Anatoly Zak. RussianSpaceWeb.com.

“Collapse of ESA-Roscosmos Crew Vehicle Partnership Holds Lessons”, Peter B. de Selding. SpaceNews.

“Potential European-Russian Cooperation on an Advanced Crew Transportation System”, Frank De Winne. Belgian Science Policy Office.

Apollo LM&SS: Mapping the Moon and the Earth (Apollo Applications Program, Part III)

lm-ss-cutaway

The later design of the LS&MM. Unlike the earlier, larger module based on the KH-7 satellite, this one’s mapping module (right) was designed by Martin Marietta. As well as the crew compartment shown, an open truss containing the mapping cameras and sensors would be attached where the “End Airlock S016″ can be seen—retrieving the film from the cameras would require depressurizing the compartment and a suited astronaut reaching into space to get it. The section on the left is the usual Apollo CM. Public domain image from NASA document Technical Data AAP Mission 1A 60-Day Study. Click for a larger view.

What it was:  A tiny space station consisting of a photo reconnaissance module docked with an Apollo CSM in place of a regular LM. In return for being unable to land on the Moon, the LM&SS would become the first lunar-orbit space station, its mission to take high-quality photographs as the CSM was orbiting, and do it in a variety ways such as in regular light or infrared. It was originally targeted at the Moon, at first to survey Apollo landing sites and later for a more comprehensive scientific mapping mission. After cancellation and rebirth it turned into an Earth observation mission, partly for scientific study of the globe and partly to test the equipment for what had become a more hypothetical mid-to-distant-future Apollo lunar mapping mission.

Details: One of NASA’s earliest goals was to survey the Moon; there’s not much point in sending out a manned Moon lander if you don’t even know where they can put down safely. This goal was met by five very successful unmanned probes, Lunar Orbiter 1 through Lunar Orbiter 5, launched between August 1966 and August 1967. The first three of these specifically surveyed potential Apollo landing sites, while Lunar Orbiter 4 mapped almost the entire near side and Lunar Orbiter 5 almost the entire far side. Altogether they covered 99% of the Moon’s surface, and the last of the probes even photographed some of the surface down to a 2-meter resolution.

Before they were launched, though, NASA was worried that they might not accomplish what they were built to do—and rightfully so: the Lunar Orbiter’s predecessor, the Ranger program, had become a laughing stock after the first six attempts to get a probe to the Moon had failed. Even though the Rangers had the comparatively simpler goal of crash-landing (and photographing the impact region on the way down), from August 1961 to January 1964 they had done nothing but produce a sorry list of launch failures, camera failures, and outright misses of a target 3475 kilometers in diameter. Ranger 7 finally pulled off the trick on July 28, 1964, smacking into the Moon 69 kilometers from the eventual Apollo 11 landing site on the Sea of Tranquility, but NASA was still nervous about getting the quantity and quality of images they would need to keep an LM from accidentally landing on a boulder or on a steep slope.

So while they pinned their hopes on the Lunar Orbiter program, they also developed a backup plan they could use if they needed it: the Apollo Lunar Mapping and Survey System (LM&SS). At the time the new National Reconnaissance Office, after several years of teething problems themselves, had been building and flying the KH-7 spy satellite successfully since 1963. In the same year the Department of Defense, NASA, and the NRO agreed to share their technology and Kodak, Lockheed, and General Electric were contracted to build a variant of the KH-7 which had its station-keeping engines and film re-entry vehicle deleted but a small docking port added. So modified, one could be lofted into orbit in the part of a Saturn V that would normally house an LM.

kh-7-camera

The camera of a KH-7 satellite, and so a close analog of the original LM&SS. The re-entry vehicle for the film (left) would have been removed and replaced with a docking adapter. Public domain image from the NRO. Click for a larger view.

As with the regular Apollo missions, this one would have been sent on its way to the Moon by the upper stage of the Saturn V and then a short way into that journey the CSM would have undocked, moved away a short distance, rotated 180°, and then returned to dock nose-first—the difference being that it would be docking with the LM&SS, not a more-usual LM.

Upon arrival at the Moon, the LM&SS (which was also the name used for the entire craft) would enter a polar orbit, slicing the Moon up photographically as it rotated beneath. The entire mission would take 35 days, 28 of them in lunar orbit so that the Moon could make one complete turn on its axis and the LM&SS cover the entire surface; this would have required a change to the CSM’s life support systems so it could handle a journey that long.

The film in the camera would be retrieved periodically and then once all the photographs were taken the LM&SS would have been ejected to crash into the Moon (as it would do sooner rather than later because of the way lunar mascons wreak havoc on stable lunar orbits) and the CSM would return to Earth following the usual Apollo mission profile.

This variant KH-7 would have been about five meters long and enclosed entirely in a near-featureless cylinder about a meter and a half in diameter. When docked to the CSM it would have looked, appropriately enough, as if the CSM was sporting an enormous telephoto lens on its nose.

By 1967 an internal battle at NASA between those who felt that the Lunar Orbiter survey was sufficient and those who wanted the higher-resolution LM&SS pictures ended with the former in the ascendant. Four LM&SS modules were at various stages of completion by then, but this particular version of the lunar mapping mission was cancelled.

Among the factors contributing to this was the fact that the mission would have needed a precious Saturn V launch just at the time when NASA were discovering that Congress wouldn’t pay for as many of those rockets as they would have liked. That explains in part the second variant of the LM&SS program, the Apollo Applications Program launch that was designated AAP-1A.

As the name suggests, this would have been an early Apollo Applications Program mission—the third, confusingly enough, after AAP-1 and AAP-2 which would have launched the proto-Skylab Orbital Workshop space station and its first crew. AAP-1A would have originally brought the LM&SS equipment to the OWS, but after the OWS’ mission planners became concerned that the first crew already had too much to do they decided not to go ahead with installing the LM&SS on the station. AAP-1A became a standalone mission more like the LM&SS’ original conception: a CSM and the LM&SS docked to one another to make a miniature space station of its own.

Whether attached to the OWS or the LM&SS, AAP-1A’s goal was Earth observation, but also to put the LM&SS through its paces for a nebulously planned Lunar observation mission that would get back on the schedule as a pure science mission sometime in the future. The basic problem this mission looked to address was interpreting the photographs of that hypothetical lunar mission. Observation missions during wartime had shown that it was actually quite hard to figure out what an aerial photo was trying to tell you if the enemy wasn’t about to let you look at what you were photographing with a later visit on the ground. With the Moon there was no enemy other than distance and cost, but establishing the “ground truth” was equally difficult. It was entirely possible that the LM&SS photos would be misinterpreted in critical ways because there was no way to cross-check those interpretations.

So somebody came up with the idea of launching the LM&SS on top of a Saturn IB. It couldn’t go to the Moon that way, but it could stay in Earth orbit and image parts of the United States that could be reached easily. Follow-up field trips on the ground would then go and look at what was imaged and learn how what was on film compared with the view on terra firma.

Somewhere along the way (and for reasons we’ll examine shortly) NASA decided not to use the full KH-7 module. Instead they commissioned Martin Marietta to develop a stripped-down version consisting of a small manned module with a small airlock to the film compartment; the astronaut using it would have to suit up, depressurize the LM&SS manned compartment, and then reach out through the lock into space to retrieve the reels. In return for the smaller size of the main camera arrangement, it was now possible to add a large suite of other sensors and cameras to the LM&SS as well as a few unrelated experiments. Martin Marietta designed an open tetrahedral truss made of aluminum, and wrapped it around the module to support the instruments. The module in turn was then docked to the CSM. While the truss-supported instruments were open to space and so generally intended to be self-sustaining, the LM&SS did have a second man-sized airlock so that an astronaut could go on a spacewalk to fix or retrieve one.

AAP-1A was planned out quite thoroughly and aimed to launch in either late 1968 or early 1969, just prior to Apollo 11 and as the Earth-orbiting mainstream CSM/LM tests Apollo 7 and 9 were underway.

What happened to make it fail: The Lunar Orbiter program was a roaring success: five out of five launches did what they were supposed to do, in contrast with the poor, benighted Rangers. The complementary Surveyor probes worked well too: seven landers and seven landings, though two did crash rather than coming down softly as designed. Apollo 12 even visited Surveyor 3 thirty-one months after it had proved its target to be a suitable landing site. Even so, as mentioned previously some NASA personnel thought that the Lunar Orbiter photos weren’t enough, and that something higher resolution would be needed. Nevertheless, the consensus emerged that what they’d got from the Orbiters was good enough, and that the LM&SS didn’t need to fly.

What may have tipped the balance that way was another pressure on the LM&SS mission. For many years it was believed that the LM&SS module was a modified LM, not a KH-7; only a little information about the program leaked out from industry insiders. Why? The KH-7 may have been obsolete (it was being replaced with the KH-8 just as NASA starting working on theirs), but it was still classified and it stayed classified until September 2011. While the NRO as a whole was willing to supply NASA with the equipment they needed, they  were nervous about even officially disclosing the existence of American spy satellites. If Apollo had absolutely needed it, they were would go along with putting one of their birds in the halogen-lamp glare of the Space Race in the hopes that no-one would look at it too closely and believe the cover story that it was a piece of NASA equipment.

So the first iteration LM&SS was cancelled because of the clandestine nature of the equipment they would have had to use. The radically less-open culture of the NRO that was supplying that equipment made it certain that it wouldn’t move forward once the primary goal of protecting the astronauts (or, more to the point, preventing American propaganda disaster) could reasonably have been said to be reached.

This is what morphed the LM&SS module into its new shape. Even though it was using the same camera, the module was heavily redesigned so as to make it less obvious where the camera came from. Even then the NRO was also apparently unhappy even to reveal that the US had the capability to image the Earth at high resolution, as would become obvious once AAP-1A’s photos were made available to the public; a document declassified in December 2011 named presidential science advisor Donald Hornig as the higher-up who pushed the issue. With their budget shrinking quickly NASA probably would have cancelled AAP-1A anyway, but certainly the concerns of the NRO were another straw on that particular camel’s back

What was necessary for it to succeed: Each of the variants of the LM&SS program failed for different reasons, so let’s take them in order.

For the initial one, using the KH7 to examine the Moon for Apollo sites, there’s the obvious possibility that Orbiters would have proven to be a second run of the Rangers. Alternatively, the faction of NASA that felt the images from the Orbiters still weren’t good enough and that the LM&SS module should fly might have come out on top. Having a rocket they could have used would have helped there. While the Saturn V wasn’t formally put aside until 1968, NASA had to have seen the writing on the wall, as they had been requesting funding for the sixteenth and seventeenth Saturns since 1966, and never could get it. If one or more of those had come through, the Lunar mapping program would have been right near the top of the list to be perched on one.

apollo-15-csm-camera-at-work

Apollo 15’s Endeavor with its scientific instrument bay open, photographing the Moon. Its camera was located at to the right of the white rectangle that can be seen near the centre of the bay. Public domain image from NASA.

The second proposal for lunar mapping, the scientifically oriented one that was to follow at an indeterminate point after the Earth Sciences test, fell by the wayside with the decision to do lunar mapping from CSMs of the regular Apollo missions. People often don’t realize that while two astronauts from each Apollo did their work down on the lunar surface, the third astronaut wasn’t idle while in orbit in the CSM above. Among the things he’d do while circling the Moon, at least during the J-class Apollo 15, 16, and 17, was photograph it using a 24-inch panoramic camera based on those used by the KH-7’s predecessors in the CORONA spy satellite program.

The difference that made flying one of those easier than an using an entire LM&SS was the nature of the camera. It wasn’t very hard to cover it up as a bespoke piece of equipment made for NASA, since in essence that was what it was, and its presence wasn’t as obvious because it was small enough that it could be stuck in the section of the Service Module (the SM being subdivided internally into six radial compartments) that was reserved for scientific equipment. Contrast that with the KH-7 module, which was obviously a piece of surveillance equipment, and one that massed 2000 kilograms and had to be docked to the front end of a CSM for the lack of anyplace else it would fit. There was no hiding that. The CORONA cameras may not have been as capable, but they were a lot more politically palatable. NASA’s willingness to take the CORONA cameras as “good enough” would have had to change before they would have pushed back against the NRO and tried for the full KH-7 LM&SS on this mission.

The Earth Sciences version of the LM&SS fell to several nibbling problems. By 1969 NASA’s budget was shrinking rapidly, so being able to shrink down to a cheaper Saturn IB was now not good enough—it was no longer even clear that the money to build the extra CSM and then support the mission would be there. On top of this the NRO continued to have concerns about what the capability of the LS&MM’s cameras would reveal to the world about their spy satellites, and weren’t keen to waste that secrecy on something as trivial as better maps of the world’s resources.

Next, by the time AAP-1A was planned to go in mid-1969, it had become clear that unmanned satellites were close to being able to map the Earth to the same level of fidelity (and in fact would start doing so with Landsat 1, which launched in 1972). And finally, even NASA had to accept that “testing Moon mapping systems” was putting the cart before the horse; it was far from obvious that they were going back to the Moon at all once the main line of Apollo missions had ended, as of course they haven’t in the years since. So what was the point of that? As there were so many things running against it, this is the version of LM&SS that was least likely to ever fly.

As a final aside it’s worth mentioned that NASA once again has their hands on some high-quality spy satellite cameras. In June 2012, the NRO donated two surplus telescopes to them, with media reports saying that their main mirrors were comparable in size to that of the Hubble Space Telescope. While it’s still unclear at the time of this writing what they’re going to do with them, NASA is believed to be considering plans to use them in a replacement for that aging orbital observatory sometime after 2020.