Chief Designers 6: Max Faget

"Cutaway Diagram of Project Mercury"

A cutaway drawing of Max Faget’s biggest achievement, the Mercury capsule.This 1959 diagram was drawn in an unsettled period between the “C” and “D” designs of the craft, the latter of which flew. Public domain image from NASA.

Maxime Allen Faget was the premiere American spacecraft designer from the days of the Mercury capsule to the initial stages of the Space Shuttle. It was due to his understanding of Harvey Allen’s “Blunt Body Theory” that American spacecraft had their iconic bell shape, and his strong opinion about his ideas for Mercury, Gemini, and Apollo led contractors to coin the aphorism “What Max Faget wants, Max Faget gets”. Experience proved that going against his intuitions was the quickest route to a losing bid in NASA design competitions.

Faget was born in Stann Creek, British Honduras (now Dangriga, Belize) on August 26, 1921. His father was a noted tropical disease researcher, employed by the British, and his family was of French descent via Hispaniola and New Orleans (his last name was pronounced in the French manner, fa-Zhay). His father was also American and so so was young Max; accordingly the family eventually returned to the United States. The younger Faget reportedly had a passion for science fiction—he had a subscription to Astounding Science Fiction—and model airplanes, interests which presumably led him to his ultimate career.

Max Faget and Frank Borman

Max Faget, foreground, and astronaut Frank Borman. This photograph was taken in April 1967 during the investigation into the Apollo 1 fire. Public domain image via NASA.

In 1943 he graduated from Louisiana State University (where his roommate was rocket designer Guy Thibodeaux) with a degree in mechanical engineering, then served on the submarine USS Guavina during World War II. After the war ended he joined NACA in 1946, which meant he was in on the ground floor when that agency became NASA in 1958.

Even before that happened he had been working on the design of a space capsule radically different from what had been considered before. Experiments in the mid-1950s with ballistic missiles had proven that the best simple way to get something safely out of orbit was with a blunt-ended capsule rather than the sharply pointed craft that had been imagined necessary until then, or the lenticular shape that was also considered at the time. Taking this idea, Faget came up with a rough sketch that would eventually evolve into the Mercury capsule.

This work was mostly done after Faget joined the Space Task Group, a group of 45 people—37 of them engineers—based out of Langley Research Center in Virginia until 1961. With the addition of Canadian Avro engineers, Faget gained his right-hand man for Mercury, Jim Chamberlin. Then in 1961, following Kennedy’s declaration that the United States was going to send a man to the Moon, the Space Task Group was greatly enlarged and moved to become the Manned Space Center (now the Johnson Space Center) in Houston, Texas. Their task was to follow through on Kennedy’s promise, and Faget was its Chief Engineer from February 1962.

As a result, Mercury went ahead with him in the lead; among other things, he created the escape tower for Mercury and later adapted for use with Apollo. He would then go on to shepherd the Gemini and Apollo spacecraft designs to completion.

Faget had an informal veto on NASA’s spacecraft designs from about 1958 to 1970, and he was not afraid to use it. Most notably the design competition for the Apollo spacecraft was jury-rigged to select the second-best scoring proposal over that of Martin-Marietta because it more closely resembled what he had designed himself in counterpoint to the external proposals.

Space Shuttle concepts

Space shuttle concepts around 1970. Faget’s “DC-3” is second from the top on the right. The bizarre SERV is top left. Public domain image from NASA.

His touch left him only once during his career at NASA, during the Space Shuttle design. At first he favoured something like Big G, but he soon came over to the side of a reusable spaceplane. While each NASA spaceflight centre had its own ideas, Faget considered all of them too complex and came up with a simpler, stubby-winged design called the “DC-3” in honour of the great cargo plane of the early days of aviation. This set off a battle within NASA over the cross-range capability of the Shuttle-to-be, with one side eventually settling on a delta-winged configuration and one side taking up Max Faget’s design as adopted and submitted by North American Aviation. Only the delta-wing arrangement would give the Shuttle a high cross-range, and that was felt to be useful enough that many in NASA held out against Faget’s proposal until the scales were tilted in their favour. Faced with a budget crunch, new NASA director James Fletcher arranged to have the US Air Force brought on as a partner for the spaceplane, and their requirement for cross-range was even higher than that envisioned by the delta-wing partisans at NASA. The DC-3 was abandoned and the Space Shuttle as we now know it began to take shape. His failure to get his design selected was apparently a source of minor annoyance to Faget for the rest of his life, but he dove into the construction of the new spaceplane and helped bring it to completion.

Faget left NASA in late 1981, not long after the flight of STS-2. He founded Space Industries Incorporated in 1983, which focused on projects intended to explore the unique conditions of space as they could be applied to industry and chemistry. Their Industrial Space Facility—a small, unmanned space station—never flew, but the Wake Shield Facility (which used its motion through space to make a “shadow” of ultra-high vacuum behind it it) ran experiments on three Space Shuttle missions from 1994-96.
Faget died of bladder cancer on October 10, 2004 at the age of 83.

Advertisements

“Big G”: Getting to Orbit Post-Apollo

big-g-schematic

A schematic of one Big G configuration. The original Gemini capsule can be seen on the left, while everything from the passenger compartment on to the right was new. The adapter on the far right was designed to allow yet another cargo module, space lab, or habitation/life3 support module depending on the mission. Public domain image from a short briefing document given to NASA in December 1967. Click for a larger view.

What it was: A 1967 proposal by McDonnell Douglas to build a new Gemini spacecraft with an extra module attached to its aft end. This would be the craft for flying astronauts to and supplying the proposed space stations—both civilian and military—that were to follow the Apollo landings. It would have been able to deliver twelve people (ten on top of the pilot and co-pilot of the original Gemini) and 2500 kilograms of cargo to low Earth orbit; with an optional extension module it could have taken 27,300 kilograms.

Details: NASA was well into post-Apollo planning by 1967 and at that early stage it was far from settled that they were going to go for a spaceplane as their next major spacecraft. Even if they did go for one, some (including Wernher von Braun) felt that an interim system was needed until what was slowly turning into the Space Shuttle was ready. Basic research on lifting bodies was still underway and while landing on land was already considered desirable, at the time NASA’s chief spacecraft designer Max Faget favoured doing so with a ballistic capsule using a device that the agency had been working on for years: a Rogallo parawing to brake its descent.

big-g-and-third-module

A clear view of the third, cylindrical module which would have been used for some Big G missions. Public domain image dating to 1969 via the NASA publication SP-4011 Skylab: A Chronology.

While there had been discussions about using the parawing with an Apollo capsule, the Gemini had the advantage in that it was the one where that program had begun; it had progressed as far as manned drop tests—Jack Swigert of “Houston, we’ve had a problem here” fame started his career as an astronaut flying a Gemini mockup under a parawing. McDonnell Douglas then sweetened the pot by reconfiguring their Gemini B so that it had the same base diameter as an Apollo capsule (making it simple to attach to a Saturn rocket) while giving twice the cargo capacity of its competitor. A modification of the Apollo CSM had studied in the years prior to Big G, and the so-called MODAP could match this increase, and even go beyond it with external cargo capsules—but then this is where the Big G’s cylindrical extension module came in and blew the Apollo derivative out of the water.

The Gemini B had begun as a logistics craft for the USAF’s Manned Orbiting Laboratory that, for the purposes of this discussion, had one important difference from the regular Gemini. It needed to be able to dock to the MOL and the most reasonable way to do so was at its aft end. This necessitated cutting a hatch into the capsule’s heat shield. While this looked like a dangerous strategy on the surface, it was proven to work and it became possible to attach other things to the Gemini B’s underside. For the basic Big G this was a truncated cone that increased the base diameter of the new craft to match that of the Apollo spacecraft, making it easier to mate it with Apollo hardware—and not just rockets. While they preferred their own cylindrical module for the third module that made a regular Big G into the nearly thirty-ton large cargo craft, McDonnell Douglas also came up with a side proposal to use Apollo Service Modules in that slot if NASA so desired.

The Big G was designed to be launched by one of three rockets. In its smallest configuration, it would be lofted by a Titan IIIM, a man-rated version of the Titan III which the USAF had started working on as a rocket for the Dyna-Soar program and then moved over to the MOL when Dyna-Soar was cancelled. This was the least powerful of the three alternatives, and would have been able to launch only the basic Big G. For one with the full complement of extra modules the choices were one of two Saturn variants that NASA was interested in building, either the Saturn INT-11 (the first stage of a Saturn V with four of the strap-on boosters used for the Titan IIIM) or the Saturn INT-20 (which would have consisted of a Saturn V’s third stage directly mated to the same rocket’s first stage).

As Big G was proposed not long after the Apollo 1 fire, it was designed to use an oxygen and helium mixture for its atmosphere, a difference from the pure oxygen of the original Geminis. The interior of the craft was also heavily reworked, with all of its systems upgraded and improved from the original’s. After all, as successful as it had been the previously flown Gemini had been only the second model of spacecraft flown by the United States.

When launched the Big G could have flown directly to a space station of short resupply or astronaut delivery-or-return missions. Alternatively the third module could be adapted to be a mini space lab, or a life support and habitation module capable of stretching the flight to 45 days; when the Big G was first being discussed, the then-record longest spaceflight of 13 days, 8 hours, 35 minutes had been achieved in an original model Gemini.

big-g-landing

Coming in for a dry-land landing under its triangular parachute, the Rogallo wing. Public domain image from McDonnell Douglas briefing to NASA, December 1967.

As previously mentioned, the end of the mission would see the re-entry capsule of the Big G bring its  astronauts home to somewhere in the United States by landing with a Rogallo wing. The capsule itself would have three landing skids that would cushion the impact of swooping into the ground, and then bring the vehicle to a stop.

Using the Big G as its transportation backbone, NASA’s hope was to have a 12-man space station in orbit by the time the Space Shuttle was ready to fly in 1975 (to use what turned out to be the optimistic estimate of 1969).

What happened to make it fail: The late 60s were an era of falling budgets for NASA, and there was a great deal of concern that the cost of launches was going to sink the manned space program—the Saturn V was notoriously expensive on a per kilogram-to-LEO basis (one figure, adjusted for inflation to modern dollars is $US22,000 per kilogram). Prices were anticipated to come down, but in general even the cheapest expendable launch vehicles have only beaten this figure by about a factor of three.

A re-usable launch vehicle had the promising appeal of bringing these costs down a great deal (projections, unfortunately based on unrealistic launch schedules, ranged as low as $US1,400 per kilogram). For crew return this made a glider of some sort necessary—either a lifting body or a winged craft—and when a high cross-range capability in NASA’s next spacecraft was cemented as desirable about 1970, wings became an absolute necessity. All possibility of a capsule, Big G included, fell by the wayside.

What was necessary for it to succeed: In retrospect the Space Shuttle looks like a mistake—its most basic reason for existence was to be a cheaper way to orbit than missions launched on expendable launchers and it never did so—most calculations pin it as more expensive per kilogram to orbit than the already expensive Saturn rockets it replaced. It’s important not to apply too much hindsight to this decision, but even in 1969 there were signs that sticking with capsules for manned spaceflight was the way to go. NASA had a strong constituency for this approach including, at first, the chief designer for the manned spaceflight program Max Faget. If he had stayed on-board with capsules, there’s a good chance that things would have turned out that way.

If they’d decided to go with a capsule, the two main options were continuing using Apollo spacecraft or building the Big G. Apollo had the advantage of still being in production, and it could have been launched on very similar rockets to the ones suggested for Big G. Big G, as mentioned, had the advantage of considerably more cargo space. Which of the two would have been picked comes down to an impossible-to-settle question of which advantage would be seen as tipping the scale.

The other possibility is that the Shuttle could have gone ahead, but that NASA could have realized just how long it was going to take before it flew: instead of going to space in 1975 its first mission was pushed back to April 12, 1981. If in 1967-69 they had had a better handle on the challenge they faced, the idea of using Big G as an interim logistics craft until the Space Shuttle was ready to fly would have been more attractive. The only problem with this scenario is that the Shuttle’s development costs put a big dent in NASA’s budget through the 1970s, so the space station that the Big G would have supported would have been hard to build while also going ahead with the orbiters.

The Martin 410: Apollo of Santa Ana

martin-410-cutaway-diagram

A cutaway view of the Martin 410 as it would have been configured en route to the Moon (excepting the escape tower, at left, which would be ejected after launch). Note the lifting body shape of the crew compartment, and the stubby cylinder of the habitation module enclosed in the larger toroidal equipment and propulsion module. Image from Glenn L. Martin Company’s “Apollo Final Report: Configuration” delivered to NASA in 1961. Click for a larger view.

What it was: One of several formal proposals made to NASA in 1961 as part of the design competition for the Apollo spacecraft. It had certain similarities to the one that was actually built (as did all of the proposals, as they had to meet criteria set by NASA) but was primarily different in two ways. As Apollo was still pictured as a direct descent mission at the time, it didn’t use the Lunar Orbit Rendezvous technique that was used for the real missions, and the re-entry vehicle was a lifting body instead of a ballistic capsule.

Details: On October 9, 1960, fourteen different companies answered NASA RFP-302, which asked them for feasibility studies on advanced manned spacecraft for the upcoming Project Apollo. Among them were Lockheed, Boeing, General Electric, and Grumman, as well as the subject of this post: the Glenn L. Martin Company of Santa Ana, California.

Within two weeks the contest was down to three: GE, Convair, and Martin with what they called their Model 410. Up against the contractors was an internal design by NASA’s Langley Research Center, specifically their Space Task Group, which had designed the Mercury capsule. Time passed and with the agency buoyed by the first successful American manned spaceflight on May 5, 1961—Alan Shepard’s Freedom 7—May 17 saw the final proposals for all four on NASA desks and the process of evaluating and deciding between them underway.

Eight days later John F. Kennedy challenged Congress to achieve “the goal, before this decade is out, of landing a man on the moon and returning him safely to the earth”, and things changed—the White House had had its interest piqued back in October when the study contracts were awarded and had been working behind the scenes with NASA. The Langley group rapidly metamorphosed into the much-larger Manned Spacecraft Center—now the Johnson Space Center—and by September started the move to land in Texas donated by Rice University (which is why Kennedy’s second famous space speech, the “We choose to go to the moon” one, was made there).

langley-apollo-design

The suggested layout of the Apollo spacecraft for the second phase of the competition. Note the considerable similarity to what actually got built. From Chariots for Apollo: A History of Manned Lunar Spacecraft. Click for a larger view.

Even before then, the Langley group had swung into action. Their chief engineer was Maxime Faget, an American of Belizean birth, had designed the Mercury capsule, and his head of engineering (Canadian Jim Chamberlin, formerly of Avro) was in the middle of designing the Gemini. Their job was to synthesize what the contractors had developed with their own design and use it to develop a new set of specifications—in actuality, a nearly complete design of its own—that could meet Kennedy’s challenge. While the three previous contractor proposals had been paid for by NASA to the tune of US$250,000 apiece (though all of them took a loss, spending in excess of $1 million apiece), the other contractors had been encouraged to carry on with their work on their own. This attitude now paid off: a new competition was begun for a final design, open to all groups who’d tried back in October not just the three previous winners. On July 28 twelve contractors (two had dropped out back during the first phase, Cornell and Republic Aviation) were asked to submit again based on the new prerequisites. Several of the contractors teamed up with each other, reducing the number of replies to five, but Martin once again went with the M-410 on their own.

Not counting the rocket adapter ring (which all the proposals had so they could mate to the upper stage of a Saturn), the M-410 was made up of three parts: a command module for use any time an engine was burning and for re-entry, a mission module in which the crew would live at other times, and a composite equipment and propulsion module.

The command module was the most interestingly divergent component compared to the Apollo spacecraft that actually got built. All three contractors evaluated ballistic, winged, and lifting body re-entry vehicles. The latter was a particular one NASA called an M-1, and Martin went above and beyond by evaluating a number of other shapes in all three categories before settling on a variation of the M-1. Their solution made the M-410’s re-entry moderately controllable, especially as it would have had four control flaps; Martin considered this a big improvement on Mercury or the Soviet Vostok. It would have been built out of aluminum alloy, and had a composite heat shield made out of ablative material and a superalloy (undecided at the time, but something like René 41 or an Inconel). The version of the M-410 submitted post-Kennedy’s speech was also unusual because of the four rectangular flaps that would deploy from its underside, which would expose solar panels to power the craft. During launch the command module had an emergency escape tower perched on top of it, though this would be jettisoned on reaching 90 kilometers in height.

The three crew would live for the majority of their mission in the mission module. This supplied a little over eleven cubic meters on top of roughly the same for the command module (contrast this with the 12.9 cubic meters of the combined Apollo Command Module and LM).

These two were then mated to the equipment and propulsion module. As well as the usual electronics for a Moon-bound manned spacecraft, it packed a single LR-115 engine (a design which later evolved into the R-10 and derivatives used for the Saturn I and the Centaur) and 4740 kilograms of liquid oxygen and liquid hydrogen.

Having launched in an unspecified way (NASA was still trying to decide if they were going to use multiple smaller rockets to establish a fuel depot in orbit, or go as they actually did with a larger rocket like the Saturn V), Martin suggested that the M-410 be sent on its way to the Moon using a lower stage attached to the rocket adapter ring. This stage would have contained roughly 13 tonnes of LH2 and LOX and been pushed by three LR-115s.

This was powerful enough to get it down to the Moon, because the entire thing was designed to land there. Exactly how this was to be accomplished remained to be seen, as NASA was then in the middle stages of its most historic argument: land directly via an Earth Orbit Rendezvous profile, or send a separable landing module and rendezvous above the Moon. Going in to the proposal period it was assumed that the former was likeliest, though the contractors were asked to consider what they would have to do if the latter won (as, of course, it did).

artificial-gravity-on-the-martin-410

One of the ideas studied, but explicitly rejected, for giving the M-410 artificial gravity: spin it up using the booster stage as a counterweight. From “Apollo Final Report: Configuration“. Click for a larger view.

Assuming it did land directly, though, the lower stage would be left behind as the propulsion module had sufficient thrust to lift itself back off the Moon and home to Earth. One thing the lower stage would not be used for was the generation of artificial gravity—Martin took the time to figure out if it were possible to generate a bit of it during the mission, including putting the lower stage out on a tether and using it as a counterweight to spin up the rest of the craft. They decided that for a trip as short as one to the Moon it wasn’t worth the extra weight needed for systems that could pull the trick off.

At the end of the mission, the command module would separate from the rest of the craft and re-enter. The M-410’s CM lifting body was designed to touchdown on water or land, with a combination of parachutes and retrorockets slowing it to just one meter per second as it touched the ground.

What happened to make it fail: On October 9, 1961 the new proposals were received, and two days later the five competing contractors gave presentations on their work. The evaluations began immediately thereafter, and were completed on October 28th. At the end of the competition, the M-410 was first with an average score of 6.9 points in each of the categories that NASA had outlined. Next came General Dynamics and North American Aviation, tied for second with 6.6 points; the GE-led and McDonnell-led contractor coalitions were the also-rans.

Despite the win Martin lost the contract to North American on November 28, 1961; NAA would go on to build the actual Apollo CSM. NASA administrator James Webb and his deputy Robert Seamans justified their decision on the basis of an external factor: NAA’s experience building the X-15.

The real reason is widely believed to be that North American had made the conscious decision to stick as closely as possible to Max Faget’s post-synthesis Langley design, and that NASA wanted that regardless of the merits of any other approach. Faget reportedly had been annoyed by the fact that none of the three initial designs had gone for a blunt-body re-entry vehicle, which was why he had come up with the Langley design in the first place and then convinced the agency to re-open the competition. He then had enough influence to disqualify any bid that didn’t follow his lead, including the Martin 410.

From this point onwards (and most noticeably in the proposals for the Space Shuttle a decade later, excepting the oddball SERV) NASA contractors understood that the implicit rule in any spacecraft design competition was “What Max Faget wants, Max Faget gets”. Despite the obvious possibilities for disaster with this approach giving him a veto turned out to be a pretty good idea: history has proven Maxime Faget was a talented spacecraft designer, arguably the best ever.

What was necessary for it to succeed: Not an awful lot more than what actually happened—the M-410 is one of the likeliest “what-ifs?” of the Apollo program.  It won the Apollo design competition, and if a small number of people (Faget, Webb, and Seamans) hadn’t been able to shift the results arbitrarily, it would have gone ahead. There would have been changes made, as happened in the real world to NAA’s design between 1961 and the first completed Block II Apollo craft flown in October 1968, but otherwise this design could have gone to the Moon.