ACTS: Europe and Russia Try Again

acts

A somewhat notional view of the ACTS as envisioned once its capsule shape was selected in 2008. By developing a command module with relatively steep walls, the ESA and Roscosmos hoped to solve the problem of cramped quarters aboard the Soyuz, and handle up to six crew. Adapted from an image by Jérémy Naegel, used under a Creative Commons ShareAlike 3.0 license. Click for a larger view.

What it was: A traditional capsule-based spacecraft to be developed jointly by the European Union and Russia, after those two failed to reach agreement on the Kliper lifting body (and further on Europe failing to the get the Hermes spaceplane off the ground).

Details: It’s been interesting the last twenty years or so to watch the gold standard for new crew return vehicles move away from small spaceplanes and lifting bodies back to capsules, as had been the preference through the 1960s. The watershed was sometime around 2006, when mockups of NASA’s Orion ceased to show a lifting body and changed to a capsule, and right about when the tandem of EU/Russia stopped looking at the Kliper and started talking about the Advanced Crew Transportation System (ACTS).

At the end of 2005, the Kliper foundered on the fact that Russia was to design and build it almost entirely. Despite that failure, the ESA was still fetching about for a crewed space project as they had also been rebuffed in approaches to the United States about sharing development of Orion’s capsule prior to Kliper. And so Russia came back into the picture within a few months.

As it happened, the EU had been working on the ATV, an unmanned supply spacecraft for the International Space Station, and it had already been noted that it bore a certain resemblance to a spacecraft service module. “Why not,” the thought ran, “have Russia develop a crew capsule to put on top of an adapted ATV?” Do so and you’d end up with something usable in Earth orbit for short missions, such as going to the ISS.

csts_eurosoyuz

The so-called “EuroSoyuz” first envisioned for the ACTS. This image is even more notional than the previous, based as it is on ideas being considered at the time and not any actual plans. The habitation module at the left, in particular, never progressed beyond an intent to make one eventually. Image by Jérémy Naegel, used under a Creative Commons Attribution 3.0 License.

Initially the craft was envisioned by RKK Energia as sort of “Soyuz, Mark 2”, which Energia called the Soyuz-2, with a Soyuz-shaped re-entry module, if not the one from an actual Soyuz. Rather it would be oversized, perhaps derived from work down on a mid-80s Soyuz replacement called the Zarya. This had stuttered along as late as 1995, when it was jointly proposed by Energia, Khrunichev and Rockwell as a lifeboat for the ISS. The ESA and Russia committed to a two-year study of the idea, with the ultimate intention of producing a spacecraft that could orbit the moon. This configuration was still in the lead as of August 2007.

The study’s mid-2008 deadline coincided with that year’s Farnborough Air Show, and the details that were announced then had moved on from the initial concept. Now the upper half of the ACTS was a conical capsule, built by the Russians and integrated by them onto the European service module. Many sources describe it as Apollo-like, but it was fairly different in being much more vertical, a mere twenty degrees from vertical on its side walls. This was a throwback to a proposed European capsule, Viking, which had popped up for a while immediately post Hermes before fading out after one subscale, suborbital test (the Atmospheric Reentry Demonstrator) in 1998.

Though the craft was not designed to the point of precise specs, we know that it would have probably have been under 18,000 kilograms, as one of the proposed ways of getting one to orbit was via Kourou Space Centre on top of a crew-rated Ariane-5, though figures bounced around from as low as 11 tonnes and as high as 20. The Russians also talked about launching the ACTS from Vostochny, probably for use on an Angara A5 (though that rocket is still under development even as late as December 2016); a Proton was also a possibility if the difficulties of launching cosmonauts on top of rocket fueled with nitrogen tetroxide and UDMH, and there was nebulous talk of a Zenit derivative (a rocket that had not been used.in Russia as the dissolution of the USSR left its manufacturer in Ukraine).

The capsule would have been five meters across the base and with its high vertical angle would have been roomy enough for six astro/cosmonauts (or four, if going to the Moon); one source reports 2.5 cubic meters of space, but this is no larger than a Soyuz and seems unlikely.

Ultimately the plan was to have a habitation module too, and the responsibility for this was assigned to Europe, but until the core ACTS spacecraft was much further along this was little more than a planned future commitment, with no details at hand. At the forward end, ACTS would at first have a Soyuz-style docking arrangement to take advantage of the matching ports on the ISS. Once it began its lunar missions, though, the plan was to have a common active/passive system with the Americans’ future craft so that joint missions would be easier.

On re-entry, the Russian-made capsule would have borrowed a trick from previously mentioned Zarya: a re-entry to land under a minimal parachute, with primary responsibility for landing being passed on to 12 solid rocket motors that would begin firing at about 300-800 meters up. Retractable landing legs were also mooted, as part of a general desire to make the capsule re-usable (with one Russian official hopefully suggesting ten flights in a lifetime). Rumor had it that this hair-raising retro-motor approach was made necessary by the Russians insisting on their historical requirement that their crews return to land in Russia, and with much of Central Asia now thoroughly Kazakh, the area they had to hit was much smaller than before—and parachutes normally cause one to drift quite a bit.

What happened to make it fail: Europe started showing signs of cold feet in the spring of 2008, just as the ACTS was making its splash at the Farnborough Air Show. The reasons are bureaucratically murky, but seem to have reflected the ascendance of a faction in the ESA that wanted to focus on “ATV Evolution”, a more ambitious approach where they’d upgrade the ATV so that it could return cargo, then upgrade the return module into a capsule, and then even turn it into the core module of a small space station. All this would be indigenous to Europe, with no Russian involvement.

ACTS might have survived this, but two competing financial tides worked against it. The Great Recession kicked off in late 2007, and for the next six years Europe had to deal with repeated sovereign debts crises that made money scarce. Not only was ATV Evolution shelved, even a shared spacecraft with the Russians was too expensive.

In the other direction we had a surging price for oil and gas (bar a severe but short drop near the start of the recession), reaching $140 per barrel in June 2008. Replete with petrodollars, Russia came to the conclusion that they didn’t need to put up with European waffling any more and could go ahead with their own, solo version of the ACTS. Political opinion at home favored this course anyway, and local laws on technology transfer made it difficult for Roscosmos and Energia RKK to come up with a legal framework for transferring technical information on Soyuz and other ACTS-related work out of Russia. This last issue is what is generally cited in official ESA documents as the main cause of ACTS’ failure.

Then in August 2008, Russia invaded Georgia in support of separatists there, followed by a gas pipeline dispute with Ukraine in January of 2009 that affected several EU countries. European confidence in Russia as a partner nosedived, and it became politically distasteful for the ESA to continue working with their Russian counterparts on such a high-profile project. Both sides quietly went on their way.

What was necessary for it to succeed: ACTS as such could have gone ahead in the face of most of the difficulties just listed. Certainly the financial crisis could have been ridden out for a few years, and the Russia oil boom didn’t last. What’s been the real killer has been the frosty relationship between Europe and Russia, kept chilled by further events like the latter’s clandestine invasion of eastern Ukraine. It’s difficult to see ACTS restarting any time after 2008, despite occasional French noises about re-establishing partnership with Russia.

Unlike most other projects discussed here, though, ACTS didn’t lead to no flying craft, or even to one. Rather it’s changed into two, and that’s not even counting the ATV Evolution which the ESA bravely claims is still on the table despite little sign of movement for about eight years. The Russian ACTS derivative was first called the PPTS, then it became the PTK. While that project has faced a long and slow road, it was formally dubbed Federation this year and, is still looking like it will fly in the 2020s.

On the European side, NASA announced in January 2013 that the previous design of the Orion service module was being replaced with an ATV-derived service module for at least the EM-1 unmanned test out past the Moon, currently scheduled for a year next September. Whether it will be used again after that mission is an open question, but so far it looks like it’s going to be used once. The initial idea that the ATV would work if someone else supplied a capsule for it was right, they’d just picked the wrong partner at first.

So the ACTS has survived after all, and did so by being cut in two. As mentioned, the Russian half has a name already, but seems fitting to name the as-yet-anonymous American/European half after King Solomon.

Sources

“Advanced Crew Transportation System”, Anatoly Zak. RussianSpaceWeb.com.

“Collapse of ESA-Roscosmos Crew Vehicle Partnership Holds Lessons”, Peter B. de Selding. SpaceNews.

“Potential European-Russian Cooperation on an Advanced Crew Transportation System”, Frank De Winne. Belgian Science Policy Office.

Advertisements

Kliper: Russia and Europe Try a Spaceplane

kliper-infographic

A schematic of the “permanent-wing” variation of the Kliper. The adapted Soyuz service module (hemisphere with docking pin at right) can be seen. Creative Commons Attribution-ShareAlike 3.0 Unported image by Julio Perez Suarez, via Wikimedia Commons.

What it was: A 2004-2006 joint project between Russia and Europe to build a small lifting-body/winged vehicle to replace the Soyuz and provide both groups with their own access to the ISS, as well as future stations. It also would have been able to fly short missions on its own without docking to an orbital facility.

Details: The Soviet Union and then Russia have tried multiple times to replace the venerable Soyuz craft—the Zarya capsule, the OK-M spaceplane, and the Buran/Energia shuttles that nearly pulled it off, among others—but never have done so. As of this writing they’re working on the PPTS spaceship, which seems to be making slow, unsteady progress and might fly before 2020. All have foundered on either Soviet politics or post-Soviet money problems and it’s not that the Russians haven’t been innovative in trying to fix the latter. Immediately prior to PPTS, RKK Energiya made a big push to get the European Space Agency on board with Kliper.

Kliper was based on work that Energia had already done in the 1990s, particularly an elaboration of it in 2002 that was the first to be called “Kliper”. But by 2004 Russian relations with the ESA were at a high point: work had just begun on the Ensemble de Lancement Soyouz, a Soyuz rocket launch pad at the ESA’s spaceport in Kourou, French Guiana, and so the Russians proposed expanding their co-operation to include a new spacecraft that would be launched on top of a substantially beefed-up version of the Soyuz, which they called “Onega” and eventually Soyuz-3.

The ESA’s Ariane 5 rocket was also powerful enough to lift a Kliper, but the Europeans were cool to the idea of launching anything but an unmanned ship on top of one. Even a Zenit rocket (derived from the side-boosters of the USSR’s last big rocket) was considered, but they’ve been under the control of the Ukraine since the collapse of the Soviet Union and the Russians have been leery of using them since then. In all likelihood, Kliper would have launched on top of a new Angara rocket—but the Angaras are still years away as of this writing, and the model likeliest to lift a Kliper (the Angara 3A) hasn’t even been begun yet. That was inconvenient to talk about, though, so the Onega it was, despite the fact that the most powerful variant of the Soyuz fired up until the end of 2004 was only about half as powerful as the one that would be needed. This new rocket was given specifications, with the idea being that it would use the N-33 engines that were to have been used in attempt to stop the N1 from exploding before that ill-fated program was cancelled. That said, it was very much a substantial project on its own.

The Kliper itself was, in 2004, a purely biconic lifting body—which is to say it had no wings at all and relied on its fuselage shape for its lift. By 2005, though, it had gained two small wings with large canards—the Sukhoi Design Bureau was brought into the circle to help with this aspect of the project. With the wings extending a mere 205 centimeters to either side of the 390 centimeter fuselage, the Kliper was a small package either way.

Three-quarters of the craft’s length—everything from its nose to the wings—were the re-entry module which would house its crew and passengers on the trip to orbit and during their return. Behind it was a tripartite service module consisting of a repurposed and upgraded Soyuz service module, a collar of support electronics as well as propulsion tanks and rockets for orbital maneuvering, and an Emergency Recovery System (ERS), which would push the Kliper the rest of the way into orbit if the rocket it was on failed near the end of the ascent to space—and give the craft the final necessary kick to high orbit and the ISS when the rocket worked well. While in orbit the Kliper’s service module would deploy two rectangular solar arrays to supply the spacecraft with electricity.

A mission would begin with the rocket stack being assembled horizontally and the Kliper placed on it. The resulting assemblage, some 47 meters in length of which the Kliper took up 12, would be transported to the pad and hoisted into a vertical position next to the gantry. As with a typical Soyuz launch, the Onega (weighing some 700 tonnes fully fuelled, of which the Kliper and its contents would be 15 tonnes for the lifting body version and 16-17 tonnes for the various winged iterations) would fire its four outer boosters alongside the central rocket engine to get the craft underway, then after they had burned through their propellants they would separate. The central rocket would then throttle up to full and get the Kliper most of the way to 100 kilometers up.

Five minutes after launch the central rocket would also be out of fuel and would detach, at which point the Kliper would coast for 10 seconds, jettison the aerodynamic faring around its ERS, and burn those engines for three and a half minutes to climb into the a 130×370-kilometer high orbit. The ERS would then be ejected too. This would get the Kliper’s perigee to within a few tens of kilometers of the orbit occupied by the International Space Station, and one more burn by the service module’s thrusters a half-orbit and 45 minutes later would circularize the path taken by the craft and allow a final approach to the ISS over the course of a day or two.

The final design of the Kliper approached launch slightly differently, so that it could be fully reusable—rather than have an expendable ERS, the craft would be serviced by an orbital tug named PAROM. Kliper would get to a low orbit on top of its Soyuz-3 and the PAROM (which would be docked to the ISS most of the time) would sally forth from the station’s higher orbit, attach itself to the aft end of the Kliper, and then carry up to higher orbit and a station docking.

Upon arrival at the station the Kliper would back into its berth, using the usual Soyuz-style docking pin and station docking rings to bring the two together and establish a solid connection. By itself it could last five days in orbit, but it could linger for a year if attached to the ISS’ systems.

kliper-reentry

The wingless Kliper variant comes in for re-entry and landing. Image source unknown, believed to be RKK Energiya.

For re-entry the craft would reverse the maneuver that lifted the lowest point of its orbit so that now a half-orbit sees it dip into the atmosphere. A final burn at this point would keep the Kliper at that height and the approach to home would begin. From orbital speeds down to Mach 1 the Kliper would act as a pure lifting body, starting at a high angle of attack slowly tilting forward as its speed dropped. The goal at this point was to keep re-entry forces to less than 5g and ideally below 3, and temperatures to no more than 1500 Celsius. The version of Kliper with foldable wings would deploy them when the craft dropped below the speed of sound, and either these or the permanent wings of the other main winged design would make the Kliper considerably more controllable as well as increasing lift and flattening out the ship’s descent as it came into a runway landing—the permanently winged version had a cross-range capability of 1200 kilometers, quite similar to that of the US’ Space Shuttle. The pure lifting body version of the Kliper had it deploy a parawing as it made its final approach, and one way or another it would be down to 65 kilometers per hour or so before its wheeled landing gear touched the tarmac. The pilots and passengers would then exit (or be retrieved, if sufficiently enervated by weightlessness) through the hatch on the tail end of the craft.

When first proposed in 2004, the idea was to have the Kliper flying no later than 2012. The very final versions of Kliper, studied by the Russians as a solo project in 2008, aimed for 2018. Each Kliper would have been good for sixty missions over the course of a fifteen year lifetime.

What happened to make it fail: Reports are that the European Space Agency’s various national factions couldn’t come to an agreement with Russia and RKK Energiya. In particular they couldn’t convince a majority of Europe’s “Big Three” in space (Germany, France, and Italy) because all think that a large part of the ESA’s value is that it lets them develop local high-tech skills and industries. Kliper would have been built on Europe’s dime but be designed and built almost entirely in Russia; while the ESA would end up with a manned spacecraft and the necessary infrastructure to launch it at the end of the process (as well as the prestige value of a manned space program), that it and of itself was not worth the cost. By December 2005 any chance of Kliper being built as a co-operative project had disappeared and Russia simply didn’t have the finances to do it themselves.

The possibility of continuing to work with Russia was maintained in June 2006 when Roscosmos and the ESA reportedly agreed to study the so-called ACTS (Advanced Crew Transport System), but this was a ballistic capsule. By Spring 2008, though, the two had completely gone their separate ways, with the Russians carrying on developing an early design of the ACTS that would eventually become the current PPTS spacecraft project.

What was necessary for it to succeed: As mentioned earlier Russia has moved on to the PPTS, while Europe is in the process of converting their unmanned ATV—currently used to take supplies to ISS, and itself derived from the work on ACTS—into a service module for the upcoming American Orion Crew Module. Whether or not this turns into a permanent arrangement remains to be seen (currently it is only for one Orion mission, Exploration Mission-1, which is scheduled to make an unmanned loop and return around the Moon in 2017), but at the very least the ESA will have developed one half of a manned spacecraft. The contrast with the way they were going to get much less experience and skill development with Kliper should be noted. The ESA had begun talking about adapting the ATV into a manned craft of their own in May 2008, in the wake of the Kliper and ACTS proposals failing.

This is, then, the one way to get Kliper flying: square the circle of Russian ambitions to build a spacecraft that someone else paid for while also getting two of Germany, France, and Italy a sufficiently large chunk of the interesting development work that they would sign on. The wildcard here is Japan, which expressed interest in joining the program if the ESA signed on for certain, but was in the middle of a long, deep recession and so uninterested in giving major financial support unless the ESA did. But other under circumstances they may have supplied a trickle of money large enough to get Kliper going, then stayed with it despite the inevitable money-related delays if the ESA pulled out later.

German illustrator Armin Schieb has made available a free book of computer-generated images (his master’s thesis) of a simple Kliper mission from launch to hypothetical future space station to landing available through Google Books. It gives a good idea of how Kliper might have been.

http://arminschieb.com/tag/kliper/