Man Very High/Project Adam: Mercury Before Mercury

Adam

The Mercury-like mission profile of Project Adam. Originally based on the cramped Project Manhigh capsule, by the time of this proposal the astronaut’s pressurized area was even smaller. Public domain image. Click for larger view.

What it was: The Army Ballistic Missile Agency’s attempt to capitalize on their successful riposte to Sputnik, Explorer 1, after the embarrassment of Vanguard TV3. Having lost the laurel of “first satellite” in frustrating fashion, Wernher von Braun‘s group quickly suggested a manned suborbital program, building on the US Air Force’s Project Manhigh, to try and take the prize for “first man in space” as quickly as possible.

Description: By the mid-1950s the USAF had got down to business of studying the effect of extremely high altitudes on pilots. One of the programs they ran was Project Manhigh, which lifted a pilot to 30 kilometers high twice in the months immediately preceding the launch of Sputnik 1.

Manhigh crammed a human being into a pressurized aluminum gondola weighing just 598 pounds (not including ballast), or 271 kilograms. The pill-shaped craft was 8 feet tall and 3 feet wide, or 244 cm × 91 cm, and that’s the first time I’ve had to use that unit in describing a crew compartment. Unsurprisingly, it housed one, though on the second flight it housed him for a remarkable 32 hours.

However, in the scramble that followed the unexpected dawn of the Space Age, the Manhigh gondola was a resource, and it was one that the ABMA latched on to, firing off a proposal in January of 1958, a few weeks before their modified Jupiter-C put the USA’s first satellite into orbit.

Simons

Major David Simons in one of the original Manhigh gondolas. Apart from a thin aluminum shell, that was it in its entirety. Image from LIFE magazine, September 2, 1957. Click for a larger view.

Not even the 1950s military was quite prepared to fire a naked Manhigh gondola to space—they were usually lifted and returned gently by balloon, with only a shock absorber needed for the landing. So the question was what needed to be done to bridge the gap between its original capabilities and a minimal craft that could withstand a swift trip above the atmosphere. Von Braun’s proposal gave one possible answer.

First named Man Very High, the initial proposal was for the Army to supply a modified Redstone based on the Jupiter-C used to launch Explorer 1 and an exterior shell using the principles of the Jupiter’s nose cone to handle the heat of flight and re-entry. The Air Force would supply a passenger cabin derived from the Manhigh capsule, and the Navy would handle recovery procedures. As part of this von Braun invited Manhigh fliers Joseph Kittinger and David Simons to Huntsville to see about adapting a Manhigh gondola for even greater altitude.

The Air Force as a whole was uninterested, though, so by March 1958 the ABMA rebranded Man Very High to Project Adam (a biblical reference, not a Frankenstein riff), and made it a joint Army/Navy project. Now the Army handled everything to do with the rocket and spacecraft, with the Navy continuing to be relegated to recovery and the USAF doing nothing at all. This they then submitted to ARPA the next month, this being the newly formed agency devoted to the military and civilian use of new technology and the unspoken mandate “Don’t let the Russians surprise us again”.

This ultimate version of Adam used two nose-cone derivatives arranged base-to-base. The upper cone would occupy the usual position of a Redstone missile’s tip, while the lower cone would be embedded tip-down in the body of the missile. This lower cone would house the astronaut and the various life-support and guidance equipment he would need. In particular, a Manhigh-like capsule would be rigidly installed horizontally, at the cone’s widest point, and the pilot would be loaded in from the gantry tower on a sliding wheeled sled before the cap sealed him in. This horizontal arrangement strongly implies that the capsule would have been even smaller than the Manhigh gondola, as the Jupiter-C was not quite 70 inches in diameter (177 cm), and no sketch of the Adam perched on top of its launcher shows a bulge near the top of the rocket. On the other hand, another diagram showing only the lower cone has its base clearly larger than this, and a third schematic of the crewed interior shows the pilot at a slight angle, feet downward. Make of that what you will.

egress

Getting onboard the Project Adam capsule. Public domain image.

In any case, with the pilot bolted into place more than seated, the Jupiter-C would be lit and our astronaut would be underway on his journey. After reaching the end of the rocket’s burn time, the double-cone craft would be cut loose, sail past apogee at 150 miles (240 km), the cut loose the upper cone as superfluous. The lower cone containing its crewman would re-enter, with deployable vanes supplying some steering, to water-land under a parachute.

Much like the first two Mercury flights he wouldn’t be going too far or for too long: six minutes of burn time, ten of free-fall, and a symmetrical 150 miles downrange to a splashdown to the north of the Caribbean Sea. Total price tag was claimed to be US$4.75 million (down from about US$12 million for the earlier, USAF-using version), with the flight to take place before the end of 1959.

What happened to make it fail: When first proposed, it was subjected to some rough handling by NASA’s predecessor, NACA, which was then working on the X-15 program with the Air Force, and the USAF itself, which was working on their Man Into Space Soonest project. Ironically enough, considering how Project Mercury flew its first couple of times, NACA head Hugh Dryden pooh-poohed it by comparing it to a circus’s Human Cannonball act.

redstone

What the US Army claimed they were working toward with Project Adam, the Redstone Transport Vehicle. Public Domain Image. Click for a larger view

Dryden did have a point. Though the Army dressed up Adam as leading to troop drops from space, the hybrid Adam capsule-craft had no development potential. Conversely, once NASA absorbed Man In Space Soonest and Max Faget sketched out the Mercury capsule, they were on their way to something that could go into orbit on top of the Air Force’s pending Atlas and Titan boosters. That would lead the way to Apollo in the long run (Gemini not being even a twinkle in anyone’s eye at that point). Meanwhile, while the Army had boosters in development to match the two Air Force rockets they were much further behind.

With all of NACA’s relevant people now heading NASA, and with NASA given a strong mandate to run the space program, von Braun’s group and the Army were frozen out until such time as the Redstone Arsenal was handed off to the new agency too, to become Marshall Space Flight Center. By then it was July of 1960, and Adam was long sidelined in favor of Mercury.

What was necessary for it to succeed: In the event, the key part of Adam—using a Redstone missile derivative to lob a capsule of some sort on a suborbital trajectory—was quickly absorbed into Mercury, and Americans #1 and #2 into space flew Adam-like missions downrange from Cape Canaveral to the Atlantic northeast of the Bahamas. So that part of the mission presents no real problems.

As for the capsule…Adam was proposed in a short section of time where everything about the United States in space was in flux. It’s largely forgotten now that NASA was actually the second agency set up in response to the USSR’s public relations coup, and that from February to the end of July in 1958 the responsible party was ARPA (modern-day DARPA). ARPA’s leaders were definitely interested in becoming something like NASA when it came to space: when NASA was formed, ARPA’s director, Roy Johnson, resigned in protest.

Fitting the project through this window of February to July ’58 would mean the USAF-less Project Adam would have had to be the proposal out of the gate, rather than ABMA trying to get the Air Force to develop the capsule as they did early on. As it was, the opposition from the Air Force and NACA meant that the ultimate Project Adam came too late to have a chance to move forward.

It’s actually a bit surprising that von Braun didn’t get his chance here—it’s hard to overestimate the prestige he had in the United States immediately following Explorer 1. Certainly his instinct that the Space Age was as much about the USSR and US showing each other up as it was about research was correct, despite the pushback on this from Dryden and crew.

As it was, Project Mercury won out and, notoriously just missing out on the first that Project Adam looked to accomplish: the USSR launched Yuri Gagarin on the first flight into space on April 12, 1961. The United States followed with Alan Shepard just five weeks later.

Sources
Von Braun: Dreamer of Space, Engineer of War, Michael Neufeld.

“First Up?”, Tony Reichardt. Air & Space Magazine, Sep. 2000.

How the U.S. Almost Beat the Soviets to the First Man in Space“, Ron Miller. Gizmodo, April 17, 2014.

Advertisements

The Douglas ASTRO: An Air Force Launcher

douglas-astro

The ASTRO, as pictured in the September 3, 1962 issue of Missiles and Rockets. Image artist unknown and copyright status uncertain, but believed to be in the public domain. Via the Internet Archive.

What it was: A lifting body craft proposed to the USAF by Douglas Aircraft. It would initially be used as a suborbital trainer then, after up-scaling and being paired with a second lifting body in an unusual nose-to-tail arrangement, evolve into a fully reusable vehicle with a nine-tonne payload capacity to LEO.

Details: In late 1962, the USAF was on the cusp of deciding how it would go forward with its plans to put military men in space. The X-15 had made its first flight mid-year, and the X-20 program was ramping up. Doubts about the latter were getting stronger, though, and would ultimately result in the Air Force deciding to work on the Manned Orbiting Laboratory instead.

It was at this point that an article was published in the now-defunct Missiles and Rockets magazine outlining a proposal from Douglas Aircraft that was supposedly being evaluated by the USAF. What it outlined was a two-part development program that would check the usual laundry list of military applications for space as perceived in the early 1960s.

The core of the ASTRO (Advanced Spacecraft Truck/Trainer/Transport Reusable Orbiter) was the answer to a question the USAF had proposed to North American Aviation and Douglas, as well as Boeing, Vought, and Republic: how to train pilots for the X-20 on actual flights prior to the X-20 being built. North American had come back with what they called the STX-15, which was a way of reconfiguring an X-15 to have the projected flight characteristics of an X-20 (except for, of course, the highest speed and orbital parts). The Phase I of Douglas’ ASTRO was their significantly more ambitious counter to the NAA proposal.

astro-schematic

A schematic of the ASTRO’s A2 vehicle, which would be both independent for suborbital hops, or be boosted to the point that it could be lifted into orbit by a derivative of the same vehicle. Note the booster nose’s ghostly presence at the far right of the image. Same source as previous. Click for a larger view.

Unfettered by the previously existing X-15, Douglas wanted to build a completely new craft dubbed A2, which would be capable of suborbital hops of about 5000 miles (8000 kilometers) after taking off from a runway under the impetus of a J-2 engine, the same rocket engine used by the Saturn V’s second and third stages. Pilots would get their space training, the USAF would have themselves a reusable vehicle with intercontinental range which could carry ten people, or a similar amount of payload. Two RL-10s, as used on the Centaur, would provide a little extra oomph.

Phase II was where Douglas diverged from the question being asked. Take the A2, modify it so that it only carried one crew and two extra J-2 engines, then stick it nose to bumper on the end of another A2 built to the Phase I spec. Turn it 90 degrees and launch it vertically, with the two separating from each other at altitude and speed (both unspecified). The sole crew member aboard the booster would glide back to Earth, while the uppermost A2 would ignite its engines, hopefully after allowing a bit of distance to build from the booster, and carry on into orbit. Douglas projected two crew and about a tonne of cargo to LEO in this configuration.

Phase III scaled up the booster, now dubbed B, and equipped it with two J-2s and one M-1, a never-built LH2/LOX engine that dwarfed even the F-1 engines used on the Saturn V’s main stage. Also launched vertically, this would be the ultimate version of the craft.

The full, two-stage Phase III vehicle was to have been 159 feet long (48.5 meters) and while mass was not mentioned the propellant capacity of the stages (165,000 pounds for the A2 and 594,000 pounds for the B) are—this suggests a total loaded vehicle mass at launch of about 380 to 400 tonnes. Total payload, as mentioned previously, was about nine tonnes, including crew, and there’s a sign that Douglas was nervous about this: the article specifically mentions wanting to launch due east from the Equator, which is an odd thing to be suggesting in 1962, well after the US had committed to launching from the continental USA.

If built, the program was expected to run from 1964 to 1970, with the first flight of the Phase III craft at the end of that period.

What happened to make it fail: It’s difficult to fit the ASTRO into the chronology of the X-20. Phase I appears to have been an attempt to come up with a “Gemini” for the X-20’s “Apollo”, giving the USAF the capability of sending pilots on long suborbital jaunts to train them for the environment they’d encounter when aboard the fully orbital X-20. Phase III would then have been a follow-up to the X-20, increasing crew capacity and payload over that craft.

If this is the case, then, it explains why the ASTRO never went anywhere. The craft made its sole notable public appearance in September of 1962, and American Secretary of Defense Robert McNamara was definitely thinking about cancelling the X-20 no later than March 1963—and possibly earlier. When the X-20 was stopped, then ASTRO would go with it. This is particularly true if one assumes, as seems likely, that the USAF was never very warm about the idea at all, and that it primarily existed as a pitch from Douglas leaked through Missiles and Rockets magazine to drum up support. There’s essentially no reports or discussion of ASTRO post-dating the magazine’s unveil.

What was necessary for it to succeed: It’s not easy to see a way forward for this one. X-20 was dead in the water less than six months later (eventually being formally cancelled in December 1963), and the payload capacity of even the Phase III ASTRO was marginal for what would have been an expensive program. There’s also the issue of Douglas vastly exceeding the question posed by the USAF—it’s unclear that there was any interest on the part of the Air Force in anything other than Phase I. This in turn defeated the purpose of building a fully operational craft for pilot training.

Sources

“Air Force Studies Space Trainer”, Missile and Rockets. September 3, 1962.