The Douglas ASTRO: An Air Force Launcher

douglas-astro

The ASTRO, as pictured in the September 3, 1962 issue of Missiles and Rockets. Image artist unknown and copyright status uncertain, but believed to be in the public domain. Via the Internet Archive.

What it was: A lifting body craft proposed to the USAF by Douglas Aircraft. It would initially be used as a suborbital trainer then, after up-scaling and being paired with a second lifting body in an unusual nose-to-tail arrangement, evolve into a fully reusable vehicle with a nine-tonne payload capacity to LEO.

Details: In late 1962, the USAF was on the cusp of deciding how it would go forward with its plans to put military men in space. The X-15 had made its first flight mid-year, and the X-20 program was ramping up. Doubts about the latter were getting stronger, though, and would ultimately result in the Air Force deciding to work on the Manned Orbiting Laboratory instead.

It was at this point that an article was published in the now-defunct Missiles and Rockets magazine outlining a proposal from Douglas Aircraft that was supposedly being evaluated by the USAF. What it outlined was a two-part development program that would check the usual laundry list of military applications for space as perceived in the early 1960s.

The core of the ASTRO (Advanced Spacecraft Truck/Trainer/Transport Reusable Orbiter) was the answer to a question the USAF had proposed to North American Aviation and Douglas, as well as Boeing, Vought, and Republic: how to train pilots for the X-20 on actual flights prior to the X-20 being built. North American had come back with what they called the STX-15, which was a way of reconfiguring an X-15 to have the projected flight characteristics of an X-20 (except for, of course, the highest speed and orbital parts). The Phase I of Douglas’ ASTRO was their significantly more ambitious counter to the NAA proposal.

astro-schematic

A schematic of the ASTRO’s A2 vehicle, which would be both independent for suborbital hops, or be boosted to the point that it could be lifted into orbit by a derivative of the same vehicle. Note the booster nose’s ghostly presence at the far right of the image. Same source as previous. Click for a larger view.

Unfettered by the previously existing X-15, Douglas wanted to build a completely new craft dubbed A2, which would be capable of suborbital hops of about 5000 miles (8000 kilometers) after taking off from a runway under the impetus of a J-2 engine, the same rocket engine used by the Saturn V’s second and third stages. Pilots would get their space training, the USAF would have themselves a reusable vehicle with intercontinental range which could carry ten people, or a similar amount of payload. Two RL-10s, as used on the Centaur, would provide a little extra oomph.

Phase II was where Douglas diverged from the question being asked. Take the A2, modify it so that it only carried one crew and two extra J-2 engines, then stick it nose to bumper on the end of another A2 built to the Phase I spec. Turn it 90 degrees and launch it vertically, with the two separating from each other at altitude and speed (both unspecified). The sole crew member aboard the booster would glide back to Earth, while the uppermost A2 would ignite its engines, hopefully after allowing a bit of distance to build from the booster, and carry on into orbit. Douglas projected two crew and about a tonne of cargo to LEO in this configuration.

Phase III scaled up the booster, now dubbed B, and equipped it with two J-2s and one M-1, a never-built LH2/LOX engine that dwarfed even the F-1 engines used on the Saturn V’s main stage. Also launched vertically, this would be the ultimate version of the craft.

The full, two-stage Phase III vehicle was to have been 159 feet long (48.5 meters) and while mass was not mentioned the propellant capacity of the stages (165,000 pounds for the A2 and 594,000 pounds for the B) are—this suggests a total loaded vehicle mass at launch of about 380 to 400 tonnes. Total payload, as mentioned previously, was about nine tonnes, including crew, and there’s a sign that Douglas was nervous about this: the article specifically mentions wanting to launch due east from the Equator, which is an odd thing to be suggesting in 1962, well after the US had committed to launching from the continental USA.

If built, the program was expected to run from 1964 to 1970, with the first flight of the Phase III craft at the end of that period.

What happened to make it fail: It’s difficult to fit the ASTRO into the chronology of the X-20. Phase I appears to have been an attempt to come up with a “Gemini” for the X-20’s “Apollo”, giving the USAF the capability of sending pilots on long suborbital jaunts to train them for the environment they’d encounter when aboard the fully orbital X-20. Phase III would then have been a follow-up to the X-20, increasing crew capacity and payload over that craft.

If this is the case, then, it explains why the ASTRO never went anywhere. The craft made its sole notable public appearance in September of 1962, and American Secretary of Defense Robert McNamara was definitely thinking about cancelling the X-20 no later than March 1963—and possibly earlier. When the X-20 was stopped, then ASTRO would go with it. This is particularly true if one assumes, as seems likely, that the USAF was never very warm about the idea at all, and that it primarily existed as a pitch from Douglas leaked through Missiles and Rockets magazine to drum up support. There’s essentially no reports or discussion of ASTRO post-dating the magazine’s unveil.

What was necessary for it to succeed: It’s not easy to see a way forward for this one. X-20 was dead in the water less than six months later (eventually being formally cancelled in December 1963), and the payload capacity of even the Phase III ASTRO was marginal for what would have been an expensive program. There’s also the issue of Douglas vastly exceeding the question posed by the USAF—it’s unclear that there was any interest on the part of the Air Force in anything other than Phase I. This in turn defeated the purpose of building a fully operational craft for pilot training.

Sources

“Air Force Studies Space Trainer”, Missile and Rockets. September 3, 1962.

LANTR LTV/LEV: A New Way to the Moon

lantr-lev-side-by-side-comparison

Two versions of the LANTR LTV/LEV. On the left is one suggested for a SSTO launcher that could carry 20 tons to orbit and had a 13.5 meter payload bay. The one on the right could fit in a 9.5 meter cargo bay, at the cost of using less efficient methane for lander fuel, a smaller crew capsule, and a fiddly tank-within-a-tank to hold some of the craft’s liquid oxygen oxidizer. Public domain image composited from two separate diagrams in NASA’s Human Lunar Mission Capabilities Using SSTO, ISRU and LOX-Augmented NTR Technologies A Preliminary Assessment. Click for a larger view.

What it was: A mid-90s proposal for a lunar mission using an innovative rocket engine for the trip to the Moon and some basic lunar industry to refuel its chemically-driven lander for the trip back. It was one of the first proposals for a Moon mission to try and move away from a brute-force Apollo-style mission that was impossible to fund.

Details: The core difficulty with a Moon mission, or a mission to much of anywhere really, is that you need such massive vehicles. The Saturn V, for example, was 2950 tonnes when fueled, and was 111 meters tall. It was accordingly expensive: approximately US$700 million in 2016 dollars. Reusability was the route taken in the decades since to try and bring this down, but the Space Shuttle ended its life costing US$450 million per launch and for a considerably smaller payload being taken to orbit too.

By the early 1990s, in-situ resource utilization (ISRU) was seen as the next coming thing for making missions cheaper. This is to say, don’t haul all the mass you need up into space, take advantage of whatever mass is already there wherever you’re going. The difficulty here is that that mass is useless rock and, to a much lesser extent, water ice. The most obvious thing to do would be to refine cryogenic rocket propellants from it, as both rock and ice can be sources of oxygen and hydrogen. By the mid-90s people had been thinking for several years about how to do that, and what what would be possible once it could be done.

The most famous fruit of this effort was planning for Mars missions, partly because the vehicles for a traditional flight there would be ridiculously large even by Saturn V standards and partly because Mars’ carbon dioxide atmosphere is almost trivially easy to turn into methane (a decent rocket propellant) if you bring along some hydrogen from Earth. Less well-known is a lunar mission using ISRU which was developed at NASA’s Lewis Research Center.

In the early 1990s Lewis had been involved in the development of a nuclear rocket of an unusual type, what they called a LOX Augmented Nuclear Thermal Rocket (LANTR). A regular nuclear thermal rocket like NERVA runs on pure hydrogen, not burning anything at all and simply relying on nuclear power to heat the propellant and produce a high specific impulse. Unfortunately liquid hydrogen is very low density, and so the tank to hold it has to be large—and it doesn’t matter how light something is if you literally can’t fit it into the cargo bay of the Space Shuttle, or however else it is you’re planning on getting it into orbit.

The LANTR solved this problem by using liquid oxygen along with the hydrogen. After being heated by the reactor, the hydrogen was mixed with oxygen, which would then burn. This had the paradoxical effects of reducing the engine’s specific impulse, but also radically reducing the amount of hydrogen needed and making the necessary hydrogen tank much smaller. Liquid oxygen is seventy times denser than LH2, so its tank would be small too. The usual mix of oxygen to hydrogen is near 1:2 (as the chemical formula “H2O” would suggest), but even when mixed 5, 6 or 7:1 with the hydrogen the reduced specific impulse of the LANTR was still considerably better than you got with a conventional LOX/LH2 rocket while also being smaller than a pure-hydrogen nuclear rocket..

artist

“Artist’s Illustration of a Self-Contained, Modular LUNOX Production Unit”, plus an astronaut apparently taking a selfie. Public domain image from A Revolutionary Lunar Space Transportation System Architecture Using Extraterrestrial LOX-Augmented NTR Propulsion. Click here for a larger view.

The leap to lunar ISRU came with the realization that oxygen was a major component of the Moon’s soil. For example, the orange soil famously (and excitedly) discovered by Jack Schmitt during Apollo 17 contained hydrated iron oxide, and was rich in oxygen and water. At Lewis, the combination of LANTR and ISRU for a Moon mission crystallized in a flurry of papers spearheaded an engineer there, Stanley Borowski, in combination with a variety of colleagues. Rather than go with an already compact Moon mission using entirely Earth-sourced oxygen, why not use the Moon’s native oxygen for oxidizer on the way back? The result would be smaller and cheaper still.

The result was a proposal to build a Moon landing ship that was embedded in some basic Lunar industry that would be set up prior to the crewed landing. The first step would be to send an automated lander with a teleoperated mining equipment to a site where ilmenite or some other oxygen-rich rock had been pinpointed from orbit. Also included would be a 35-kilowatt nuclear reactor, which would provide the heat to break down the lunar rock with the hydrogen that would be brought along too, producing water. The water in turn would be broken down to oxygen and hydrogen, the former being stored and the latter recycled to start the process again on the next batch of rock.

Once 10.5 tons of liquid oxygen had been built up (a process which would take a year), the LANTR LTV/LEV (Lunar Transfer Vehicle/Lunar Excursion Vehicle) crewed mission would begin. Here a little bit of variation appears. When first suggested in 1994 the craft was assumed to be using a Shuttle-C, a derivative of the Shuttle for cargo only, to get to orbit—the LANTR wasn’t powerful enough to lift the whole works by itself (and no-one was very keen on firing a nuclear engine at ground level in any case). The Shuttle-C was already a cancelled project, however, and by 1995 NASA had been pinning its hopes on the VentureStar or some similar SSTO. At the time the LANTR LTV/LEV was being bruited about, the size of the SSTO’s payload bay hadn’t been nailed down and while NASA had specified 20 tons to LEO it was unclear how long the cargo it carried could be, Accordingly Lewis Research Center came up with two LANTR LTV/LEV configurations, each of which would be lifted in three pieces and mated in orbit.

If the SSTO gave them 13.5 meters to work with, the result was a 58.8-ton, 26.2 meter-long craft. Compare that with roughly 140 tons and 35 meters for the Apollo LM/CSM/S-IVB that launched the Apollo astronauts to the Moon. This version of the LANTR LTV/LEV would have be entirely fueled by LOX and LH2, excepting (presumably, as none of the sources say) hydrazine for the RCS thrusters as usual. On top was a curiously inverted command module; the author could find no discussion of how that was handled when time came for re-entry, so one presumes rotatable seats for the crew.

The longest part of this variation was the joint LH2/LOX tank for the transfer vehicle, while the widest was the bulbous hydrogen tanks on the lander. Both had to go to get into the smaller 9.5-meter SSTO payload bay suggested. The lander was switched to a more-compact but less efficient fuel, liquid methane, while one of the two oxygen tanks for the LANTR was moved to inside the LH2 tank, and outfitted with a double wall that would keep the supremely cold hydrogen from solidifying the oxygen within. The resulting craft was slightly lighter at 58.5 tons and definitely shorter at 24.2 meters, but in return they had to come up with some way of shaving 700 kilograms off of the crew capsule. Both variations of the capsule were approximately the same size as the Apollo CM, though the first’s was slightly larger than the second.

profile

The LANTR LTV/LEV mission profile. Note the direct descent and direct return. Public domain image via NASA from Human Lunar Mission Capabilities Using SSTO, ISRU and LOX-Augmented NTR Technologies A Preliminary Assessment. Click here for a larger view.

There was no LM, though, because the LEV was a direct-descent, direct-return vehicle. This did mean that if the stay on the lunar surface was to be of any length, a third mission, automated like the LOX plant, would have to be sent beforehand to give the astronauts a habitat. The LEV itself was inadequate otherwise.

What happened to make it fail: Though the mission was considerably cheaper than an Apollo-style trip to Moon—Johnson Space Center was looking at the time to spend less than US$1 billion on a Lunar return mission—not even that amount of money turned out to be available in NASA’s budget, particularly after the decisions were taken to continue with the Space Shuttle and build the International Space Station around the same time as the proposed first flight of a LANTR LTV/LEV’s, around 2001.

It also didn’t help that the craft came to an unwieldy size. It was intended to be launched on the VentureStar, and that never came to fruition. A comparable mission restricted to launch vehicles that actually existed needed one Shuttle mission and one launch of a Titan IV (which could lift longer payloads than the Shuttle could), a peculiar and expensive combination.

Something like it still could have begun as late as the about ten years ago, but then a discovery about the Moon put the final nail in its coffin. From 1994 through 2009 it became increasingly clear that the Moon had ice in some of its South Polar craters, with the case being settled by the Chandrayaan-1 probe. This changed the game for ISRU, since ice is a lot more useful raw material than lunar soil. Essentially all serious planning for a Moon mission since then has reflected this, and lunar rock has fallen by the wayside.

What was necessary for it to succeed: Much like the First Lunar Outpost, the LANTR LTV/LEV’s best bet would have been at the time the Clinton Administration was trying to decide how to help occupy the former Soviet Union’s rocket scientists so that they wouldn’t end up designing missiles for who knows what country. The decision to go for an joint space station rather than a joint lunar mission or base was a relatively easy one, given the USSR’s experience with stations, but it’s not too difficult to see the US deciding to go for the public relations spectacle of the Moon over the more staid ISS.

Otherwise the LANTR LTV/LEV is a sound concept if the promised Isp advantage holds, to the point that (by the standards of this blog) something much like it still would be worth building and flying. The primary difficulty with it in 2016 might be, oddly enough, that it’s too small. Sixty tons falls into the “between two stools” range that we discussed in the entry on the R-56, too big for something like an Ariane 5 or Delta IV Heavy, but too small for the upcoming SLS. Given that you’re going to have to use an SLS and that rocket will quickly outstrip 60 tons by a lot, why not design a spacecraft that uses up the extra payload capacity? Fans of SpaceX’s Falcon Heavy effort might want to take some notes, though.

Sources

A Revolutionary Lunar Space Transportation System Architecture Using Extraterrestrial LOX-Augmented NTR Propulsion. Stanley K. Borowski, Robert R. Corban, Donald W. Culver, Melvin J. Bulman, and Mel C. Mcilwain. 1994

Human Lunar Mission Capabilities Using SSTO, ISRU and LOX-Augmented NTR  Technologies A Preliminary Assessment. Stanley K. Borowski, 1995

High Leverage Space Transportation System Technologies for Human Exploration Missions
to the Moon and Beyond. Stanley K. Borowski and Leonard A. Dudzinski. 1996

Sidebar: The Langley Water Lander

langley-water-lander

A diagram of the Water Lander if it were full sized, as opposed to the one-eighth scale model that was built. Note the curvature of the wings as seen from the front, not coincidentally like the hull of a boat. Public domain image via NASA from Model Investigations of Water Landings of a Winged Reentry Configuration having Ourboard Folding Wing Panels. Click for a larger view.

There are two fundamental dichotomies in spacecraft design (or three, if you count the types of fuels used for their rockets). You have ballistic capsules in opposition to winged craft/lifting bodies, and you have water landings as opposed to coming in on solid ground. Three of the four possible combinations have been used by crewed spacecraft but one hasn’t: a water landing of a winged vehicle.

That’s not to say it hasn’t been examined, though. NASA studied the ramifactions of an emergency ditching of a Shuttle Orbiter (conclusion: a lot of damage to the underside, but it would stay afloat for a while as long as the wings weren’t badly holed), and the Australians famously photographed the USSR retrieving a BOR-4 test article from the Indian Ocean in 1983. Even earlier, the American ASSET, originally conceived for testing the alloys earmarked for the X-20’s heat shield, splashed down off Ascension Island after a suborbital jaunt from Cape Canaveral.

lander2

The Water Lander model in its tank. Public domain image from same source as previous. Click here for a larger view.

As far back as 1959, NASA was testing the concept using a water tank at Langley Research Center in Virginia. They had a chicken-and-egg problem, though. How do you build a water-landing spacecraft without tests to tell you what it will look like? But then how do you do the necessary tests without having it built first? Ultimately they had to just go ahead and build it based on first principles and common sense. What they came up with never had a name, so for convenience’s sake we’ll call it the Langley Water Lander.

The re-entry vehicle they posited was a light one, just 3600 pounds (1.6 tonnes), which is only a few hundred pounds more than a Mercuty capsule. Given that much of it was wings, it would have definitely seated only one astronaut, perched in a slim fuselage.

And it really was a lot of wing for its size, 27 feet from tip to tip and with an area of 263 square feet (7.0 meters and 24.4 square meters); it had no tail at all, though it did have a large vertical fin. The wing was gently curved, making a cross-section something like a boat so that the craft could rock from side to side on the surface of the water without the tips of the wings dipping below the surface. This was made even more unlikely by the fact that the wingtips were designed to fold up once the craft had gone subsonic.

On its underside were two retractable 4.7-foot × 0.67-foot (1.4m × 0.20m) water skis and a smaller triangular skid aft, roughly a foot to a side, for drag; this was found to be more stable during the final run-out than anything involving a single nose ski.

Thus configured, a one-eighth scale model was built and tested, with the conclusion that the landings were not so bad at all. The Water Lander wasn’t too sensitive to a little yaw in the touch-down, and even with small waves (eight inches high and fifty feet long, or 20 cm and 20 meters,to scale) the run-out was only three to four hundred feet with a maximum of 5.1 g deceleration. On smooth waters, it came in at under 3.0 g and 100 feet further travel after touchdown.

The Water Lander was never intended to be built for actual use, but rather was a reflection of where NASA was in late 1959. They examined a great many basic possibilities for the crewed space program, many of which have fallen into obscurity. In the case of winged water landers, the reason likely was that there’s no advantage to them. A ballistic capsule, almost uncontrolled, can benefit from a target as big as the South Pacific Ocean. But the whole point of a winged re-entry vehicle is that it can be directed once in the atmosphere, and if you can do that you might was well direct it towards a runway.

Source

Model Investigations of Water Landings of a Winged Reentry Configuration having Ourboard Folding Wing Panels, William W. Petynia. Langley Research Center. December 1959.

STCAEM-CAB: A Mouthful of a Mars Mission (Space Exploration Initiative, Part II)

STCAEM-CAB schematic diagram

A schematic of the STCAEM-CAB Mars space vehicle. The twin heat shields (the scoop-shaped structures) were needed as the craft was too massive to aerobrake in one piece even after the TMIS was jettisoned. The MEV and MTV would separate before the Mars encounter, aerobrake and enter orbit separately, then rendezvous and dock while high above the Red Planet. Public domain image by the author, based on one published in Space Transfer Concepts and Analysis for Exploration Missions, Implementation Plan and Element Description Document (draft final) Volume 2: Cryo/Aerobrake Vehicle. Click for a larger view.

What it was: One of the products of 1991 study by Boeing for a Mars mission vehicle. Technologically it was the most conservative of the possible craft they suggested, relying entirely on cryogenic propulsion, but the trade-off was a hair-raising mission profile including a hard aerobraking maneuver at Mars.

Details: In 1989 the then-President of the United States, George H. W. Bush, put forward a proposal to (among other things) send astronauts to Mars. While NASA had always kept Mars contingency plans up to date since even before Apollo 11, this was one of the few times where it looked for a while like they might actually be able to put their plans into motion. In 1989 they produced a strategic plan known informally as the “90 Day Study” and then set various contractors to work on its different goals.

One of these was “deliver cargo reliably to the surfaces of Moon and Mars, and to get people to these places and back safely”. Boeing was the contractor primarily concerned with this this one, and performed an initial study in 1989 before amplifying it in 1991-92. For Phase 1 of the later study they worked their way through the pros and cons of several different approaches to crewed Mars missions for NASA to choose between, most of which involved novel propulsion systems like nuclear rockets and solar-electric ion engines.

One was more conventional though, closely hewing to NASA’s own baseline for the mission, and was presented first in their Phase 1 final study. All the Mars craft were assigned the clumsy name of the study, Space Transfer Concepts and Analyses for Exploration Missions (STCAEM), and differentiated by their propulsion method. The first craft was accordingly the STCAEM-CAB, the final thee letters standing for “cryogenic/aerobraking”.

The Mars mission was placed firmly in the context of the whole Space Exploration Initiative, not least because the vehicle in question was going to ring in at a whopping 801 tons. No conceivable rocket was going to lift it in one piece, and so the SEI’s space station Freedom was to serve as a base for the in-orbit assembly of the massive ship. A Moon base was also assumed, and served two purposes insofar as Mars was considered: as a test bed for the various technologies, and also a place to put a deliberately isolated habitation module that would simulate a long Mars mission without leaving the immediate vicinity of the Earth-Moon system.

Shuttle-Z in

Another Shuttle-derived launcher (not the Shuttle-Z) charmingly called the “Ninja Turtle” configuration–lifting the STCAEM-CAB’s two aeroshells off Earth and to Freedom. Public domain image from NASA, same source as previous. Click for a larger view.

Using what was called the Shuttle-Z (a variant on the Space Shuttle wherein the orbiter was replaced almost entirely with 87.5 tons of payload, leaving only the main engines, the boosters, and the iconic orange tank), eight trips would be made to Freedom with various components of the ship. After assembly, the STCAEM-CAB would consist of several sections, the largest of which was the Trans-Mars Injection Stage (TMIS) at 545.5 tons. Fuelled with liquid hydrogen and liquid oxygen, the cryogenics referred to in its name, the four-engined TMIS would push the entire craft into a Mars-bound trajectory before being jettisoned. Boeing studied a number of missions that could be flown and came to the conclusion that the relatively less efficient cryogenics propellants would work best when Mars was at opposition, leading to a 580-day mission.

Missions for Mars have often included odd wrinkles in their plans to help cut down the amount of propellant needed to pull them off; for example, the Integrated Program Plan’s mission avoided a circularization burn at Mars, leaving it in an elliptical orbit that made the lander’s descent to the surface start at a higher speed—but better to have to slow down the relatively small MEM than the entire interplanetary craft. In the case of the STCAEM-CAB the trick was unusual enough to warrant mention. For the bulk of the outbound trip, the two other main components of the craft, the Mars Excursion Vehicle (MEV) and the Mars Transfer Vehicle (MTV), would stay docked, with a small transfer tunnel between the two of them. In this configuration it would serve as the habitation for the crew of four astronauts, with the MTV’s crew module being 7.6 meters by 9 meters. This would give each astronaut something on the order 50 cubic meters to live in, with another 50 for everyone to share in the MEV, at least on the way out. With fifty days to go before Mars, however, the two would separate (the crew staying in the MTV, which had the capability of returning them to Earth) so that they could each dive into the Martian atmosphere at closest approach and slow down behind their individual heat shields.The MEV would brake first, 24 hours before the MTV and crew, giving Mission Control a chance to observe Mars close up and decide if it was safe for the second aerobraking maneuver.

Side and front views of the Mars Excursion Vehicle

Side and front views of the MEV after jettisoning its aerobrake and landing on Mars. Public Domain image from NASA, same source as previous. Click here for a larger view.

This approach also had the advantage of making the aerobraking shells smaller, as even done this way they approached the length of a Shuttle Orbiter (30 meters, as opposed to 37.2 meters) and so the shell for a singular craft would have been impossible for a Shuttle-derived stack.

After both had aerobraked and entered orbit, they would dock again, the crew would transfer to the MEV, and then descend to the surface. Several landers were mooted, from one with a 0.5 lift-to-drag ratio (the favored option, pictured at left), one with a 1.1 ratio, and a biconic lander that was going to require a launcher back on Earth that had a diameter of 12 meters(!).

The astronauts would stay on Mars for 30 days, then a subset of the MEV (the third and uppermost of the circles in the MEV image shown, as well as the tankage underneath it) would launch skywards again to dock with the MTV. This would in turn get them back out of Mars orbit and home to Earth, where they would aerobrake again to bleed off some velocity and enter Earth orbit. The crew would finally enter an 3.9 meter wide by 2.7 meter tall Apollo-like capsule for re-entry to somewhere in the ocean. Optionally the MTV would remain in orbit and be refurbished for another journey.

Mars Transfer Vehicle and aeroshell

A closer view of the MTV, which alone would make the journey back from Mars with the crew aboard. The aeroshell would make the trip too, as the craft would aerobrake into Earth orbit too. Public domain image from NASA, same source as previous. Click for a larger view

Boeing scheduled out the launch of the first Mars mission three different ways. One was a “Minimum Program”, intended to do no more than meet the 90 Day Study’s stated goals, one was a “Full Science Program”, while the last was an eyebrow-raising “Industrialization and Settlement Program”. The latter was on Mars by 2009, and saw a permanent Mars base with 24 inhabitants in 2024, some astronauts staying there for years. The science-oriented program made it by late 2010, and saw a permanent lunar base of four (the settlement plan saw 30!) but only a periodically inhabited Mars base of six astronauts. The minimum options saw a first Mars landing, by coincidence, in 2016. It had neither permanent Mars or Moon base. As for the cost of each, Boeing includes various graphs but only gives one number, for the Industrial and Settlement Program: an eye-watering $100 billion from 2001 to 2036, with a peak of $19 billion in 2020.

What happened to make it fail: Well, “$100 billion…with a peak of $19 billion” for a start. While the Bush Administration was obviously looking for their own version of a “Kennedy Moment” when they announced the Space Exploration Initiative, they were not all that keen on actually paying for it. Couple that with extreme hostility from Congress anyway, and the SEI’s ultimate goal of Mars mission was in trouble right from the start. Likewise NASA blew it by proposing grandiose plans like an 800-ton Mars ship, the full space station Freedom, and a permanent lunar base, to the point that the backlash led to the “faster, better, cheaper” era under Dan Goldin (which had its own problems, but that’s another story). Boeing even spent some pages in Phase 1 trying to determine returns on investment and the like, with some of their anxiety at the cost coming through in their prose. This includes an unflattering comparison to the development of the Alaskan oil pipeline and the investment in supertankers during the closure of the Suez Canal from 1967-75.

As far as the STCAEM-CAB in particular was concerned, it also suffered from being “good under most circumstances but never the best”. Boeing preferred the Nuclear Thermal Rocket variation, and focused on that going forward from Phase 1 of the study, even though Goldin had been NASA administrator for a year and a half by the time their final work on the project was completed. The NTR variant was certainly not going to go ahead thanks to NASA’s new focus, and the CAB had already fallen by the wayside.

Ultimately, though, this mission suffers from the same problem as the Integrated Program Plan’s Mars Mission from the early 70s. It existed down near a long line of large programs, few of which actually happened. You need to join back up several links in a chain to get to the launch of this spacecraft. Ultimately, quite a few things would need to change for STCAEM-CAB to make its trip, making it quite unlikely under any circumstances.

Sources

Space Transfer Concepts and Analysis for Exploration Missions, Implementation Plan and Element Description Document (draft final) Volume 2: Cryo/Aerobrake Vehicle, Gordon.R. Woodcock. Boeing Aerospace and Electronics. Huntsville, Alabama. 1992.

Chief Designers 5: Wernher von Braun

von Braun and Nebel, c.1932

Wernher von Braun, right, and VfR compatriot Rudolf Nebel, circa 1932. Image origin unknown, believed to be in the public domain. Please contact the author if you have more information. Click for a larger view.

For many years Wernher von Braun was considered the paramount figure in the history of spaceflight. Certainly he had the unique distinction of being a key figure in two national space programs: the precocious and abortive German one, and the dominant American one. However against this we need to set the fact that he was “only” a rocket designer and was not intimately involved in developing the spacecraft that rode on top of them—one could make the argument that Max Faget was the most important figure in American manned spaceflight history because he was dominant in that role—and he pales in comparison to what we have learned about Sergei Korolev’s role in the Soviet space program since the 1980s. He and Korolev were the two greatest visionaries of the early space program, but then von Braun also suffers from having the most morally problematic career of any leading person in the history of space as well.

Wernher Magnus Maximilian, Freiherr von Braun was born in Wirsitz, Germany (now Wyrzysk, Poland) on March 23, 1912. From 1915 he and his family lived in Berlin. Reportedly the present of a telescope and later a copy of Herman Oberth’s seminal book Die Rakete zu den Planetenräumen (By Rocket into Interplanetary Space) fascinated him and drew his attention to space.

A peripatetic school career let him develop his skills in physics and mathematics, ultimately leading to a degree in aeronautical engineering from the Technische Hochschule Berlin in 1932 and a degree in physics from Friedrich-Wilhelms-Universität in 1934. It was in 1930, however, that his future was cemented by his joining the Verein für Raumschiffahrt (“Spaceflight Society”, commonly known as VfR), which had been founded three years previously. Their experiments with rocketry drew the attention of the German Army, particularly Walter Dornberger.

Under Dornburger, von Braun became the head of a rocket research program at Kummersdorf—the thesis for his 1934 degree was classified and unpublished until 1960—and civilian testing of rockets was banned. Unfortunately for Germany and the world as a whole, these preliminary steps were taken under the new German government of Adolf Hitler and the Nazi party. Von Braun’s fortunes and that of German rocketry would rise and fall with them.

After several years of success at Kummersdorf, von Braun’s group was moved to Peenemünde on the Baltic coast. There they developed the A4 rocket, better-known as the V-2. This was the first man-made object to reach space, doing so several times on suborbital test flights, possibly as early as the steep misfire that was the fourth V-2 test flight on October 3, 1942 and certainly no later than the end of 1944. Unfortunately for von Braun’s future legacy it was used to launch conventional warheads at the UK and later the invading Allied armies after D-Day. Both London and Antwerp suffered under his rocket. Perhaps even worse was the fact that from the autumn of 1943 the V-2 was built in the Mittelwerk using slaves taken from Mittelbau-Dora concentration camp. Von Braun managed to distance himself from this during his lifetime by pointing to his imprisonment by the Gestapo for two weeks in the spring of 1943, but the historical consensus since then is that von Braun knew more than he let on during his life and did little to resist the SS (who ran Mittelwerk, and of which von Braun had been an honorary member since 1940) after his release from prison so long as he could continue his rocketry work.

Ultimately his efforts to clandestinely jumpstart a German space program as a side effect of his military research came to a halt with the end of World War II. He and some 500 others of his Peenemünde group surrendered to the American 44th Infantry Division and were eventually sent to the United States as part of Operation Paperclip, a program to transfer as many key German scientists as possible out of Germany and away from the USSR and UK. Upon arriving in the US he and his compatriots had their war careers and Nazi activities hidden by the American government. For the next five years his role was to teach the US Army about the V-2 and its underlying technology while essentially under house arrest at Fort Bliss, Texas.

In 1950 he and what was left of the Peenemünde group were transferred to Huntsville, Alabama, where their conditions were relaxed and they were allowed to enter civilian life in the United States. Von Braun became technical director of the Army Ballistic Missile Agency, whose purpose was to develop a long-range ballistic missile. This they did, the Redstone. During this time, von Braun also became famous as a public advocate of spaceflight, helping to write a popular series on the future possibilities called “Man Will Conquer Space Soon!” for Collier’s magazine in 1952-4; later he was technical director and a spokesperson for a highly rated television special on the same topic for Disney in 1955. He also became an American citizen during this time.

At this point the United States was close to launching its first satellite into space, but the government was loath to have it done by the German expatriates. Only after the launch of Sputnik 1 and the answering failure of the United States’ first Vanguard launch on December 6, 1957 was the Army and von Braun able to overcome this reluctance. On January 31, 1958, the first American satellite, Explorer 1, rode into orbit on top of a Jupiter-C rocket—a Redstone derivative produced by the Huntsville team.

Wernher von Braun's NASA portrait, 1960

Wernher von Braun’s NASA portrait, 1960. At age 48 he had just become director of Marshall Space Flight Center after already being the most important person in Germany’s wartime rocketry program. Public domain image.

For the next two-and-a-half years, von Braun’s responsibilities were slowly transferred from the Army to the US’ new civilian space agency NASA. Project Mercury was begun, and used Redstone derivatives for launches. Hunstville began work on a heavy launcher named Saturn, initially for an Army space program but then that was transferred to NASA too. Finally all Army space activities were passed over to NASA on the order of President Eisenhower. On July 1, 1960 the Redstone Arsenal in Huntsville was renamed the Marshall Space Flight Center and put entirely in the hands of the civilian space agency. Von Braun was to be its first director, a position he held until 1970.

Those ten years saw von Braun living his dream, developing the Saturn V and being a key contributor to the Apollo program that landed men on the Moon. His vision of America’s future in space began to diverge from reality post-Apollo 11, however. He was a strong advocate of continuing on to Mars—the Integrated Program Plan’s Mars mission was largely his baby—and after two years in Washington following his transfer from Huntsville he came to realize that it was not going to happen. He resigned from NASA on May 26, 1972.

In 1973 he was diagnosed with kidney cancer, which slowly sapped away his life. Before he was done, however, he helped to found the National Space Institute, one of the precursors the National Space Society, a major space advocacy and education group. He served as its first president before his hospitalization and then death on June 16, 1977 at age 65.

Chief Designers 3: Jim Chamberlin

Jim Chamberlin's Achievement

Jim Chamberlin’s major accomplishment, the Gemini spacecraft. Though only baseline Geminis flew, there were numerous proposals to adapt this workhorse to different uses. This photograph shows Gemini 7 from the inside of Gemini 6. Public domain image via NASA.

James Arthur Chamberlin was a key member of NASA’s Space Task Group, which became the Manned Space Centre (now the Lyndon B. Johnson Space Center) in Houston, Texas. During his NASA career he was the Head of Engineering for the Max Faget-designed Mercury capsule, then graduated to become the designer of the Gemini capsule. Many of the Gemini-derived proposals in this book came from him, or involved him heavily. He was also responsible for McDonnell Douglas’ unsuccessful shuttle proposal and instrumental in the development of the Space Shuttle that actually got built.

Chamberlin was born in Kamloops, British Columbia, Canada on May 23, 1915. After his father was killed in World War I, his mother relocated the family to Toronto, and Chamberlin eventually was trained as an engineer at the University of Toronto and Imperial College London. After working in the United Kingdom for a few years, he returned to Canada and spent most of World War II designing aircraft.

Jim Chamberlin, 1950s

Jim Chamberlin sometime in the 1950s prior to joining NASA. Public domain image via Industry Canada.

After the war ended he moved on to Avro Aircraft of Toronto, a subsidiary of Hawker Siddley. There he rose in the ranks until he became the chief of technical design for the Avro Arrow, an advanced jet interceptor. When that program was cancelled in 1959 (a source of some chagrin in Canada to this day), he led more than two dozen now-unemployed Avro engineers to the United States; they joined the recently created Manned Space Center in Langley, Virginia during April of 1959. Project Mercury was already underway, with Max Faget’s work on designing its capsule begun even before the formation of NASA in July 1958. Chamberlin became Faget’s right-hand man as head of engineering and project manager in charge of seeing the Mercury capsule through its manufacture by McDonnell Aircraft. NASA’s own history describes him as the man in charge of “troubleshooting problems that cropped up during the early Mercury flights”.

With that experience under his belt, Chamberlin was assigned to be the chief designer of the follow-up to Mercury. The Apollo program was already underway too, but was still years away from producing something tangible, and the Gemini capsule flew into that gap.

Even today the Gemini has its proponents, some even calling for its return as a solution to the United States’ troubles with manned space exploration in the 21st century. It was a very versatile craft, and when McDonnell was shut out of building the Apollo spacecraft (which was given to North American Aviation and Grumman Aircraft Engineering), the manufacturer and Chamberlin bombarded NASA with variations on the Gemini that could perform missions to space stations, as space stations, and even a landing on the Moon. None got built, though a few came close. The real Geminis flew in 1965 and 1966, but by then Chamberlin had relinquished his position in the program and become a troubleshooter for all aspects of the Apollo spacecraft: Command Module, Service Module, and Lunar Module.

In 1970 Chamberlin left NASA and joined the company he’d worked with for a decade—now McDonnell Douglas after a merger with Douglas Aircraft. He first worked on McDonnell Douglas’ candidate for the Space Shuttle, but that competition was won by North American Aviation’s design. He then worked at McDonnell Douglas’ facility on-site at the Johnson Space Center until his death on March 8, 1981.